

Accelerator Laboratory Advanced Research Cember for Bemach And Institute for Chemical Research Known University

Continued Development of High Resolution Camera

Y. Iwashita, Y. Tajima and H. Hayano

Early System

Cavity is rotated and moved longitudinally.

The cavity moves to swallow the camera cylinder.

Camera Specification

- 1.5M-pixel CMOS Color Camera 1400px X1000 px: 5.0µm/px Toshiba teli CSF5M7C3L18NR
- Distortionless Lens(0.15x ~ 0.35x, f75mm)
 V.S. Technology Corp. VS-LD75
- 40mm Extension Tube (later)

Maximum resolution: \sim 0.70x, \sim 7 μ m/px (\sim 15 μ m/px) Limited by the Working Distance \sim 120mm

VS-LD75

CSF5M7C3L18NR

Statistics of spots(>100µm) in Z84

REMARK: All the spots were found at the input coupler side of the EBW seam.

- · 28 spots like cat's-eye were found at the equators of the cells. (only the spots with diameters larger than 100µm are counted.)
- Any other kind of spots were not found.
- Likely convex (no confirmation).

- · 28 spots like cat's-eye were found at the equators of the cells. (only the spots with diameters larger than 100µm are counted.)
- Any other kind of spots were not found.
- Likely convex (no confirmation).

New Inspection System damper New camera cylinder & illuminator Iongitudinal rotation movement

- Quenched at Eacc~15MV/m without field emission(no Xray).
- Passband mode measurements shows that #3 and #7 cell are suspicious.
- In CERNOX measurements two hot spots were found at the equator region of #3 cell.

AES001 has hard quench at 15MV/m, where its location was identified by Cernox at FNAL.

aes01 11-08-07-10-52-59

Correlation with Thermometry

Two hot spots@FNAL/JLAB

Three spots found@Kyoto

The location

AES001 #7 cell 325°

EBW affected area

Largest grains

Larger grains Transition?

to Equator and #6 cell

200µm/div

Fine grains

spot

Stripe Illumination(SI)

- Fourteen Electro-Luminescence(EL) strip sheets are 10mm in axial direction and cover 100mm in azimuthal direction.
- These fourteen strips can be turned ON/OFF one by one.
- Assuming that cavity's interior surface is a complete mirror, we can measure wall gradients of the cavity's interior surface with these ELs.

Wall Gradient Measurement

mirror: 45deg

Wall Gradient Measurement

The center spot move left to right

Wall Gradient Measurement

Wall Gradient of spot at #3 cell 181°

- This data shows that the spot is a convex(ball).
- Because of the continuity of the measured gradient, we can integrate the gradient to estimate the height of the spot.

Wall Gradient of spot at #7 cell 325°

Left: Measured gradients and a fitted differential gaussian.

Right: Schematic drawing of the integral of the fitted curve in the <u>left.</u>

This data shows that the spot is a concave(pit).

ERL single-cell cavity内面観察(1)

(エンドシングルセル)

渡邉 謙
STF Baseline group meeting
2008/3/28

観察した空胴:エンドシングル空胴

9セル空洞

- センターシングル空洞
 - セル形状の検証
 - 表面処理工程の確認

- エンドシングル空洞
 - ビームパイプ構造の検証
 - 大口径ビームパイプ
 - 偏心フルート
 - ・ インプットポート
 - ・ ピックアップポート

4月?に観察予定

観察位置

④赤道からLBPアイリスに向かう面

②赤道部:EBW後バフ研磨

①LBPのアイリス部

ビーム軸方向

②赤道部:EBW後バフ研磨

ボール?(突起)らしきものが見えた

赤道部はバフ研磨しているため、溶接痕は消えていた。

③SBPのアイリス部

溶接痕の上にも全体的にピットが観測された。

④赤道からLBPアイリスに向かう面

レンチを落とした傷をベビーグラインダーで一部分研磨したとのこと(#800?)

研磨した面では傷が残っていた。

目視でも確認できるレベルの傷であった。

このような傷はEP(30μm)で取れないことが分かる。

Prototype design for production series Cavity not included!

Prototype design for production series

Upper Module

Prototype design for production series Cavity Table

Cylinder Support

Moves 2 ways:

up down and left right

Camera Cylinder and its Support

Camera Cylinder and its Support

No hole on cylinder

Illumination Control Panel Layout (tentative)

▲ SURUGA SEIK

GP-IB, RS232C, USB 1~6 Axis

Summary

- I. The resolution of 7.4μm is achieved.
- II. AES1 spot locations agree with the results from passband mode and thermometry.
- III. The wall height/depth can be estimated by integrating the measured gradient.
- IV. Design of the production model is finished.
- V. The first lot will be delivered to KEK soon.
- VI. Searching trading company to handle exporting bureaucracy.

