Americas S0 Cavity (Tesla-style) Test Philosophy and Test Status

results from JLab, Cornell and FNAL

C.M. Ginsburg (FNAL) GDE SCRF Meeting April 21, 2008

The Ideal Cavity Process/Test

• Standard Processing Recipe

- Incoming cavity quality control checks.
- Optical inspection of as-received cavity.
- Bulk electro-polishing of ~150 um.
- Ultrasonic degreasing.
- High-pressure rinsing.
- Hydrogen degassing at 600 deg C.
- Field-flatness tuning.
- 20 um electro-polishing.
- Ultrasonic degreasing.
- Field-flatness verification and retuning if <95%.
- High-pressure rinsing.
- Assembly and vacuum leak testing.
- 120 deg C bake.
- Vertical dewar test.

• Standard Testing Recipe

- Hold at ~100 K during cool down to check for Q disease.
- Q vs. T measurement during cool down.
- Q vs. E measurement on π mode. RF process as needed.
- Q vs. E measurement on all other modes. RF process as needed.
- Final Q vs. E measurement on π mode.
- Notes:
- All Q vs. E measurements to include radiation data logging.
- Utilize nine-cell temperature-mapping system if available.

• Diagnostic Techniques

- Determine limiting cells based on mode measurements.
- If nine-cell temperature-mapping was not employed, apply thermometry to limiting cells and retest.
- Perform optical inspection of limiting cells.

C.M.Ginsburg GDE Mtg

SO-Americas (9-cell Tesla-style) Cavity Tests

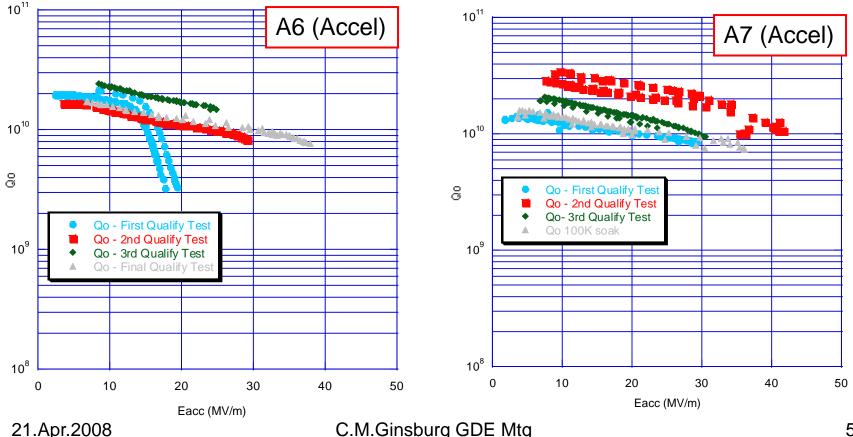
- 9 cavities
 - 5 from Accel (qualified vendor)
 - 4 from AES (new vendor)
- At least 45 vertical tests at three labs
- Test philosophy: get highest gradient
 - Process reproducibility
 - New process development
 - New test stand commissioning
 - Diagnostic instrumentation development

SO-Americas (9-cell Tesla-style) Cavity List

P. Pfund, update December 3, 2007

The Cavity Report

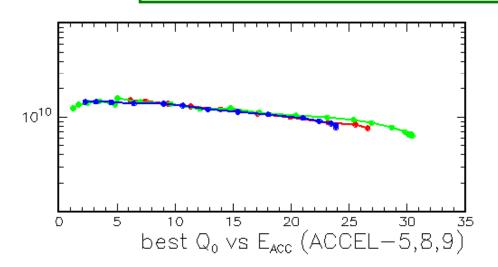
	\square									
Lab	Cavity Name	Current Location	Current Use	Designated Use	Reported Gradient	Gradient Limitation	Comments			
FNAL	AES001	enroutet to KEK			16.0 MV/m (Jlab)	Quench	(as of 3Dec07) AES1 has completed detailed thermometry testing at Fermilab and is en route to Japan for optical inspection and subsequent processing and testing.			
FNAL	AES002	at Jlab	Under test		19.6 MV/m (Jlab) 26 MV/m (Jlab) 32.6 MV/m (Jlab)	Quench Quench Quench	(from Rongli Geng, 26Nov07) It is a pleasure for me to announce the final result of the latest AES2 test, following the 4th light EP. The highest accelerating gradient is 32.6 MV/m and quench is the limit. There was some cable heating at higher gradient			
FNAL	AES003	at Jlab	Under test		17.6 MV/m (Jlab) 20 MV/m (Jlab)	Quench Quench	(as of 3Dec07) AES3 nine-cell will ship from JLab to Fermilab prior to Christmas. Activities to be completed at JLab prior to shipping include a bead- pull measurement to verify field flatness, high- pressure rinse, assembly, and evacuation. The cavity wil			
FNAL	AES004	at Jlab	Under test		28 MV/m (Jlab) 19.5 MV/m (Jlab) 17 MV/m (Jlab)	Field Emission Cable	To be tested again after HPR.			
	AC 5	At Cornell	On loan from ACCEL				Has dent in HOM can at power coupler end of cavity.			
FNAL	AC 6	At Jlab	Tested	Dressed, high gradient testing (S1).	37.8 MV/m (Jlab)	Field Emission	(as of 3Dec07) Accel 6-8 nine-cell cavities will be shipped from JLab to Fermilab.			
FNAL	AC 7	At Jlab	Tested	Dressed, high gradient testing (S1).	31.9 MV/m (Jlab)	Quench	(as of 3Dec07) Accel 6-8 nine-cell cavities will be shipped from JLab to Fermilab. Accel7 will then be delivered to ANL for commissioning of the electro- polishing stand. In case of split shipments, Accel7 will be sent first so Mike can get started.			
FNAL		At Jlab	Under test	NML-CM2	25 MV/m (Cornell)	Field Emission Quench	(as of 3Dec07) Accel 6-8 nine-cell cavities will be shipped from JLab to Fermilab.			
FNAL	AC 9	At Cornell	Under test	NML-CM2			Will be sent to Jlab after testing at Cornell.			


Cavity_Listing_2007-12-03.xls

http://tdserver1.fnal.gov/project/ILC/S0/S0_coord.html Selection showing cavities designated for S0-Americas

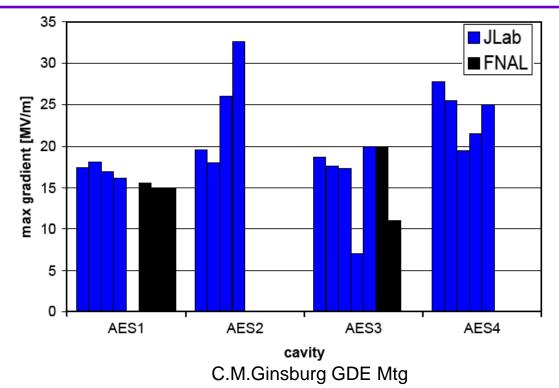
JLab: Process reproducibility

J. Mammosser, TTC Meeting at Fermilab, April 2007

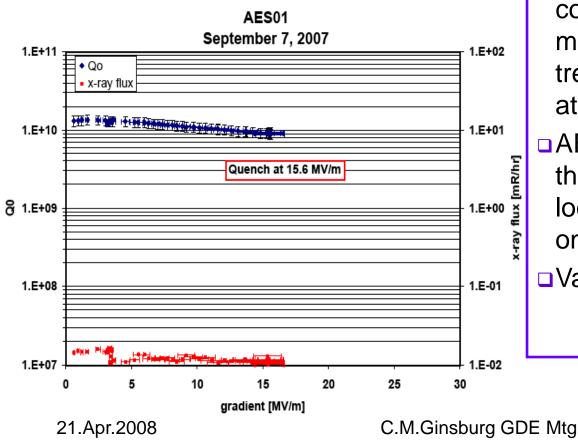

- Accel cavities qualified vendor, same treatment for all cavities
- All curves but one limited by guench; A6 final test limited by FE
- Large distribution of quench gradients with multiple tests of same cavity
- Best(last) gradient 38(38) MV/m for A6, and 42(32) MV/m (A7)

Cornell: Process development

ACCEL 5	Processing		Max E_{ac}	cc	Limitation	
2006-09-06	$144 \mu m EP \left(\begin{smallmatrix} 0.5 Hz \\ 30^{\circ} C \end{smallmatrix} \right)$		$16 \mathrm{MV/m}$		Q drop	
2006-11-14	degas		17 MV/m	n	Q drop, FE	
2006-12-19	$3\mu m BCP$		15 MV/m		Q drop	
2007-03-02	$25\mu m EP \left({}^{0.5 Hz}_{36^{\circ} C} \right)$		24 MV/m		quench	
2007-06-15	$70\mu m$ EP, degas,		18 MV/m		quench, FE	
	$30 \mu m ~ EP$ ($_{\rm 2Hz, ~35^{\circ}C}$)				
ACCEL 8	Processing		Max $E_{\rm acc}$		Limitation	
2006-04-21	$60\mu m BCP$		17 MV/m		uench	
2006-05-24	$60 \mu m BCP$		26 MV/m		drop	
2007-02-15	$25\mu m EP \left(\begin{smallmatrix} 0.5Hz \\ 32^{\circ}C \end{smallmatrix} \right)$		30 MV/m		uench	
2007-05-09	$100\mu m$ EP, degas,		26 MV/m		Q drop	
	$30 \mu m ~ EP ~_{\rm (2Hz, ~35^{\circ} C)}$					
2007-07-20	$7\mu m~EP$ (2Hz, 35° C)		$24 \mathrm{MV/m}$		Q drop	
ACCEL 9	Processing		Max E	000	Limitation	


Ashmanskas & Padamsee SRF 2007

- Development of Vertical EP (VEP) etc.
- HPR and assembly procedures capable of reaching high gradient
- SRF development & training with about one/month 9-cell cavity process/test


JLab/Fermilab: new vendor qualification

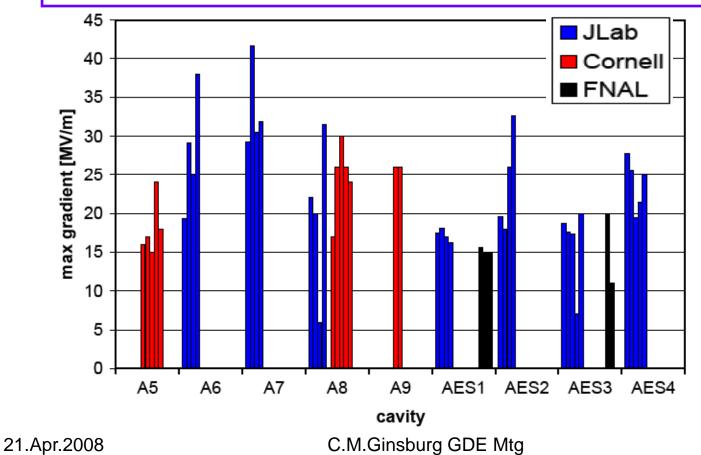
- □ Four cavities from new (9-cell Tesla-style) cavity vendor AES
- Standard JLab surface treatment
- Best cavity test gradient: AES2 at 33 MV/m
- Mode measurements and thermometry used to locate quench site of AES1 and AES3
- Optical inspection of AES1 using Kyoto/KEK system
- Optical inspection of AES4 irises using JLab Questar system

Fermilab: Test stand commissioning & diagnostic instrumentation commissioning

AES1: First Fermilab 9-cell test in new facility

 First Fermilab Vertical Cavity Test Facility 9-cell test September 2007

- AES1 and AES3 tests consistent with previous JLab measurements (only surface treatment in between was HPR at JLab)
- AES1 and AES3 tests included thermometry for quench site location; mode measurements only a few times


□ Variable coupler commissioning

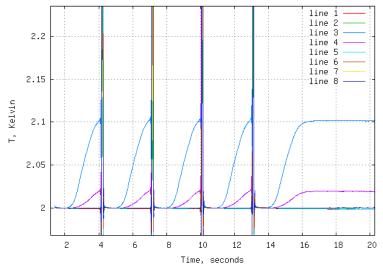
Summary of 9-cell (Tesla-style) Test Results

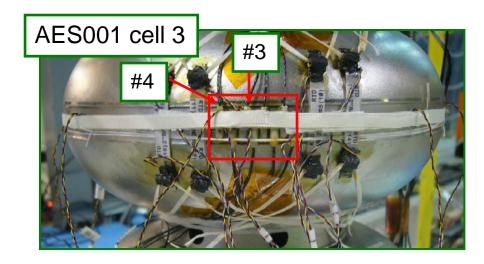
>45 tests at JLab, Cornell and Fermilab

□ Highest gradient in a test was 42 MV/m - A7, 2nd test of 4

□ Four of the eight cavities made 31.5 MV/m at least once

Instrumentation/techniques employed for data shown in this talk


- Fast thermometry for quench site location
- Questar optical inspection of suspicious sites – so far on irises only
- (Kyoto/KEK optical inspection)
- Second sound sensors
- Mode measurements
- Variable coupler


Fermilab: Fast Thermometry

FT reference: Orris et al., WEPMN105, PAC07 AES1 Results: Ginsburg et al., TUP47, SRF2007

- "fast" read-out electronics (10 kHz)
- Cernox RTD sensors (precise calibration, expensive)
- Flexible placement of sensors
 - Attachment to cavity surface with Apiezon grease and thin nylon cord or G10 band
- Used for AES1 and AES3 tests, to locate isolated quench spots, both at JLab and Fermilab

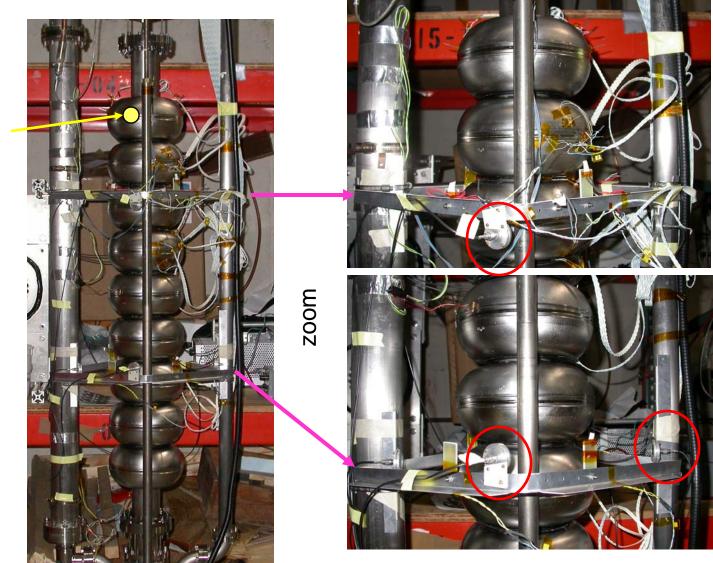
AES1: Temperature rise ~0.1 K over ~2 sec seen in sensors #3 and #4 before quench

21.Apr.2008

C.M.Ginsburg GDE Mtg

JLab: Questar inspection of AES4

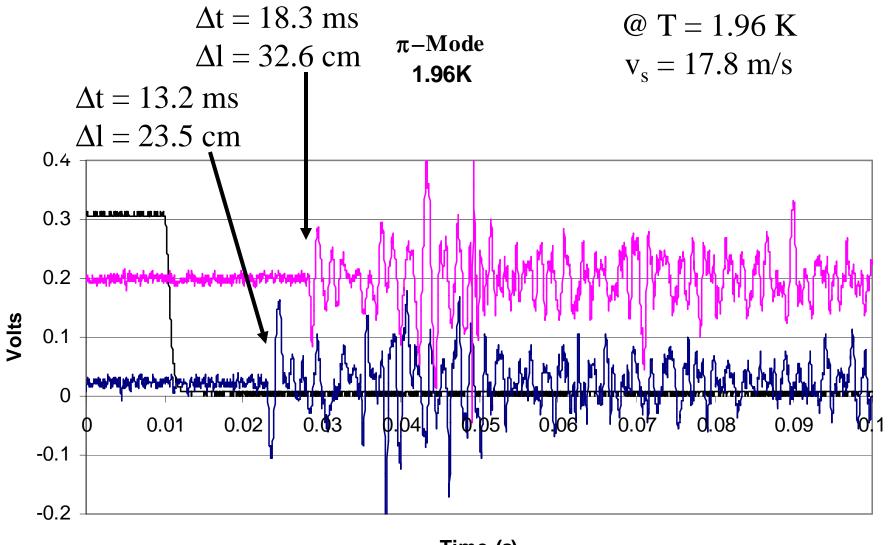
- Questar long-distance microscope for optical inspection
- To date, only used for line-of-sight inspections
- Could be enhanced for inspection of full cavity inner surface
- Located defect on iris of AES4, suspected from mode measurements of inducing field emission


21.Apr.2008

Cornell: Quench Detection with 2nd Sound

- 9-cell *re-entrant* cavity (AES) quenches in the πmode at 13 – 14 MV/m.
- 2nd sound has been used to find quench location to several mm accuracy
- Attempt to confirm with regular thermometers failed due to detached sensors
- Pass-band modes have been studied
 - Data under analysis
 - Quench is in end-cell only
 - Preliminary result: only end-cell shows quench
 - middle cell E_{acc}> 30 MV/m

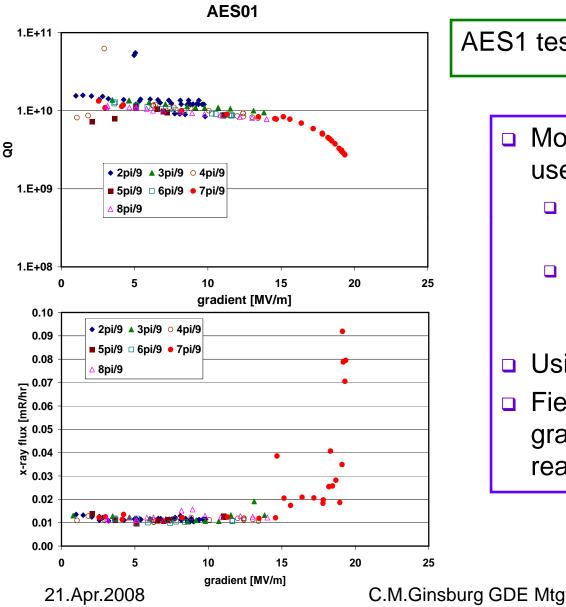
Cornell: Quench Detection with 2nd Sound


AES re-entrant cavity (LR9-1) with 8 2nd sound sensors

C.M.Ginsburg GDE Mtg

Quench location

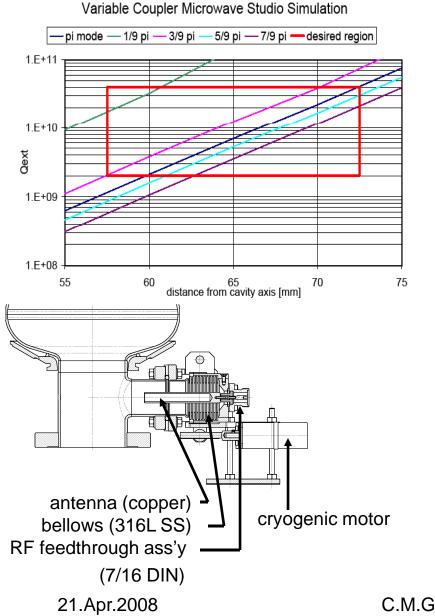
Cornell: Quench Detection with 2nd Sound Sample Result for : 2nd Sound Quench Detection



Time (s) C.M.Ginsburg GDE Mtg

Mode Measurements

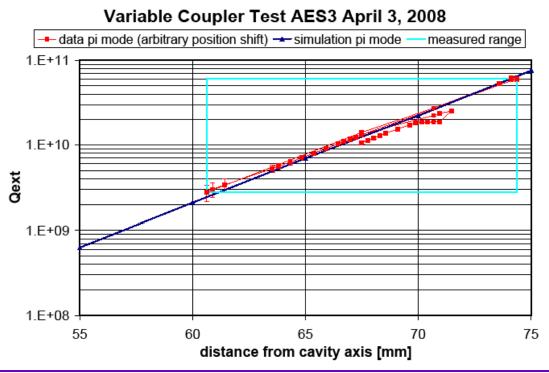
- Mode measurements determine cavity performance limiting cell(s)
 - Determine limitation to within one (cell 5) or two cells
 - Measure Q vs. Eacc of TM010 passband modes
 - Determine total cavity stored energy at maximum input power just before quench for each passband mode
 - Maximum gradient or stored energy for each cell extrapolated from measurement using Superfish simulation by H. Wang (JLab), or DESY method of 9 coupled oscillators, etc.
 - Cell with lowest maximum gradient causes the performance limitation
- In principle, can extract information about all the (pairs of) cells, but this possibility has not been fully exploited
 - Quench location is "easy" to detect; field emission source more difficult
- Performed during small fraction of cavity tests (I know of 5)
 - LHe and/or time limitation (or not high priority)
 - Lack of variable coupler
- Have been extremely useful for vendor qualification tests in which (eventually) well located hard quenches occurred
- Should be performed during every vertical test for maximum value


Mode Measurement Example

AES1 test at Fermilab

- Mode measurements very useful to find quench location
 - Cell limitation found at JLab to be 3 or 7
 - Cell 3 found to host quench site after several tests using fast thermometry
- Using fixed coupler
- Field emission turned on for gradients above 15 MV/m, only reachable in 7π/9 mode

Fermilab: Variable Coupler


Purpose: Always keep cavity critically coupled

- Facilitates mode measurements
- Reduces measurement errors
- Reduces standing waves in cables which can damage them in case of high power

Design parameters

- Mount coupler to standard input coupler port, to save vertical space in cryostat
- **a** 2×10^9 < Qext < 4×10^{10}
 - From DESY vertical test experience
- Cryogenic motor submerged in liquid helium bath, to save instrumentation space at cryostat top plate
- Simple & small movement mechanism

Fermilab: Variable Coupler Performance

- Antenna distance from cavity axis inferred from simulation
 - Shape of simulation and data agree very well
- □ Measured range 2.8×10^9 < Q_{ext} < 6×10^{10}
 - □ Design range: $2 \times 10^9 < Q_{ext} < 4 \times 10^{10}$
- Measured range 60.62 mm to 74.38 mm ($\Delta R = 13.8$ mm)
 - Design range: $\Delta R = 15 \text{ mm}$

Summary/Conclusions

- Substantial progress on S0 (9-cell Tesla-style) cavity tests in Americas region 2006-today
 - Moving toward common process/test requirements
- Variety of cavity test goals
 - Cavity processing studies (Cornell, JLab)
 - Cavity vendor qualification (JLab, FNAL)
 - "Tight loop" verification of process for qualified vendor (JLab)
 - Diagnostic instrumentation development (JLab, Cornell, FNAL)
 - □ Optical inspection, 2nd sound quench location, variable coupler
 - New thermometry mapping systems are being developed at FNAL, Cornell, JLab
- Mode measurements coupled with thermometry or 2nd sound detectors (and subsequent optical inspection) have been useful for understanding cavity behavior
 - Should be performed for every vertical test, to optimize understanding of cavity behavior for each test, and gather statistics