STF plan: Toward 35MV/m

H. Hayano KEK

High Gradient R&D

step 1: research to find cause of low gradient

for quench: high resolution camera

for field emission: confirm what is the residuals on the surface (SEM, XPS)

for Q-disease: confirm what is the diffused into the surface (XPS)

step 2: develop countermeasure

for quench: (remove beads & pits, material impurities & defect scan, ...) for field emission: (ethanol rinse, degreaser rinse, sponge wipe, Ultra-sonic, HPR,...) for Q-disease: (baking, Argon baking, ...)

step 3: apply & verify countermeasure

exchange problem cavities and apply the countermeasure

• step 4: evaluate statistics for the countermeasure

install the countermeasure world-wide, get statistics world-wide.

Cavity Schedule Proposal

Surface Research Plan

Plan of treatment sample in 1 cell cavity

DESY 4th: Field Emission Analysis

effect of ethanol

ICHIRO5 S0 Studies at JLab

possible tool (sponge) to remove residual chemicals

dust, but easy to remove

Plan of Sponge rotation & axial sliding sponge wipe Filled with right after EP UPW, or Ethanol, or detergent, ... **Sponges** on iris and equator Sponges with folded. on iris and equator with un-folded. Unfold & expansion Mechanism (pantograph) cavity drain

Kyoto/KEK High Resolution Camera

Possible tool (Ultra-sonic tool) for beads & pits

Example of Dia. 2mm Diamond tooling(#600)

Concept of Ultra-sonic tool application to cavity cell repair

<u>Material evaluation</u>: High sensitivity eddy current scan -> Y. Iwashita's presentation

quench identification : Easy handle multiplexing T-map-> Y. Iwashita's presentation

STF Cavity Surface Process Facility

Under commissioning

STF – EP system commissioning using old MHI cavity Picture shows acid draining by holding cavity up. more than 5 times EP cycle (10+40+60+60+40+ μ m removal) were done. So far, 1.28g/l Nb melt into acid of 1100 l.

Surface check by Kyoto camera; No special residuals were found.

Material removal measured by ultra-sonic thickness meter. EP target was $60\mu m$. (Big error in the measurement.)

Snap shot of inner surface after EP.

STF Vertical Stand

Thanks to FNAL AES01, STF VT is ready to commission. *Waiting for deliver of cryostat magnetic shield.

AES01 pre-tuning, got 96.6% flatness.

Fitting test into VT cavity holder, pumping test.

Fitting test into VT cryostat

