Measurement of Inner Shape of Cavity

ENAMI Kazuhiro

Mechanical Engineering Center

KEK

Purpose

- To Measure Inner Macro Shape of Cavity
 Directly In accuracy of 0.1mm or higher from
 Iris to equator
 - Diameter, Coaxialty, Bending, Welding Bead etc.
 - Errors in Production
 - Welding
 - HidroForming
 - Deformation By
 - Welding
 - Polishing
 - Gravity

How to measure Inner Shape of a Cavity?

Measurement Using Laser and Camera System

 Laser-Camera Measurement can measure distance with 0.01mm resolution

Difficulty in measurement of Inner Shape

- To Measure distance with high resolution, following conditions are required
 - Long Distance between Laser and Camera
 - Close to an Object
 - Small Measureable Distance
 - Good Camera and Lenz
 - Good Surface Condition
- To Measure shape with high resolution, following conditions are required
 - Accurate 3-Dimensional Location of measuring unit
- It is difficult to satisfy these conditions in measurement of inner shape

Downsizing of typical system

 Down-sized Φ80mm Measurement Unit can measure distance only in 1mm resolution!

Solution of Problems

- Image Processing
 - Break through CCD Pixels and Width of Laser Spot
- Error Canceling System using Multi Cameras
- Calibration of Distance Measurement
- Calibration of Shape Measurement
- Detection of 3-Dimensional Position and Orientation of a Measuring Unit

Development of Inner Shape

----Measurement

Red: Laser Blue: Camera Green: Measuring Unit

Distance Measurement

直動ステージ上の資料測 定実験をおこない,測定 精度,測定範囲が要求を 満たすことを確認する.

Circle Shape Measurement

基礎実験で作製した測定装置を, θ回転ステージにのせ円筒状の試料を測定し, 内径測定ができることを確かめる.

3D Measurement

直動,回転機構をそなえ, φ60mmにおさまる実機を 作製し,加速管サンプル の測定をおこなう.内部 を三次元測定機で測定した た結果との比較をおこない,測定機の性能を確認 する

Measuring Experiment using Image Processing and two Cameras

測定装置

Result Under Worst Conditions

Images
Line Image is disturbed by Speckle Pattern

Calibration by Identification of Parameters

- Original Point of Measuring Unit is different from Rotation axis
- To measure correct shape, It is necessary to Identify vectors from Rotation axis to Origin of Measuring Unit

Parameter identification by

Parameter Dector Artifact Measurement

- - Center of Pipe→Rotation Axis
 - (ax,ay)
 - Rotation Axis→Origin of Header
 - (sx,sy)
- Observed value
 - Angle
 - **Distance**
 - Radius of a Pipe

$$A = \begin{bmatrix} \vdots \\ -p_{x_n}/r \end{bmatrix}$$

$$\begin{vmatrix} a_x \\ a_y \end{vmatrix} + \begin{vmatrix} s_x \\ s_y \end{vmatrix} \begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix} + l \begin{vmatrix} \cos \theta \\ \sin \theta \end{vmatrix} = R$$

$$A = \begin{pmatrix} -p_{x1}/r_1 - p_{y1}/r_1 & (p_{x1}\cos\theta_1 + p_{y1}\sin\theta_1)/r_1 - (p_{x1}\sin\theta_1 + p_{y1}\cos\theta_1)r_1 \\ \vdots & & \vdots \\ -p_{xn}/r_n - p_{yn}/r_n & (p_{xn}\cos\theta_n + p_{yn}\sin\theta_n)/r_n - (p_{xn}\sin\theta_n + p_{yn}\cos\theta_n)r_n \end{pmatrix} d = \begin{pmatrix} r_1 - R \\ r_1 - R \end{pmatrix}$$

Non Linear Least Square Least Square method

→Gauss-Newton Method

$$p_{xi} = (a_x + s_x \cos \theta_i - s_y \sin \theta_i + l_i \cos \theta_i)$$

$$p_{yi} = (a_y + s_x \sin \theta_i - s_y \cos \theta_i + l_i \sin \theta_i)$$

$$r_i = \sqrt{p_{xi}^2 + p_{yi}^2}$$

Measuring Unit

- Ф80×50mm
- 180g:

Measurement of Distance

Measure a Distance to object on Linear Stage using Point Laser

Relation between Position of Laser Image and Position of Object

Calibration using Pipe Artifact

- Aluminum
- OuterDiameter
 - ф220mm
- Hight 100mm

Inner

Diameter

φ100mm,

φ150mm,

ф200mm

Calibration Experiment Without Setting in high accuracy

Error Elimination of Raw Data and

Identification of Parameters

★These Points are not errors!

Elimination of Uncertain

regular reflection

Saturation or Vanish of Laser Image

To Identify Parameters which fits these data to Circle Data of φ150mm

Reconstruction of shape

Circle Shape
 Φ150mm

errors

Deformation of Raw Data are Correctly reconstructed!

Measurement of \$\phi100mm\$ Pipe

Measurement of φ100mm Pipe

Elimination of Uncertain Data By Software

Result: Radius 49.9mm. Center is (0.3mm,-1.2mm)

Successfully Shape Measurement without setting in high accuracy

Conclusion

Done

- 1D Measurement
 - High Resolution higher than 0.1mm
 - Image Processing
 - Error Canceling
- 2D Measurement
 - Calibration using Pipe Object
- 3D Measurement
 - Design and Production of Measuring Machine
 - Detection of 3-Dimensional Position and
 Orientation of a Measuring Header
 NOW GOING