

Status report on "Industrialization studies" at LAL on power couplers for XFEL

SCRF Meeting

Fermi Lab 21-25 April 2008

S. Prat

SCRF meeting

Fermilab

April 21-25, 2008

LAL conducted industrialization studies to clarify the mass production of couplers Award of 3 contracts in March 06: ACCEL, e2v, TOSHIBA System Design Review: 2 full days for SDR each review at - functional analysis each contractor Preliminary Design Review: **PDR** - feasibility of the manufacturing processes - samples for parts and joining Critical Design Review: - detailed drawings - organization of the mass production - risks analysis CDR - samples of Cu plating and TiN coating Final Project Review: - deliver 2 prototypes - volume manufacturing plan - costs estimate for XFEL couplers **FPR**

S. Prat

Industrialization studies were essentially INTELLECTUAL WORK

Main documents delivered from industrialization studies

- · TDR
- RF and Thermal analyses
- Detailed drawings + 3D model
- · Production Plan: organization, facilities, equipment, manpower, WBS
- Control Plan for mass production
- Logistics for assembly, conditioning and tests
- Documents Management Plan: big amount of data to issue
- Configuration Management Plan: traceability, control of changes
- · Risks analysis
 - technical risks
 - organizational risks
- Financial report:
 - Price breakdown analysis
 - Price table

→ Good assurance that industry having performed this work will succeed in the mass production

S. Prat SCRF meeting Fermilab April 21-25, 2008

Intellectual property issues

clauses of IP were defined precisely in the contract

BASIC PRINCIPLES:

- All informations existing in the industry prior to contract: remain exclusive property of industry
- Inventions, know-how acquired, created or perfected during collaboration work:

	Inventions, methods and know-how acquired	Obligation of disclosure to CNRS	Rights of LAL - CNRS		
			Circulate and publish	Use and reproduce	Adapt
1	Procedures for welding, brazing, Cu coating, TiN coating	No		X 1	
2	Other methods, procedures and sequences of fabrication, WBS, Specific piece part drawings, Special tooling and fixtures developed for fabrication, assembly and control, Cost proposal information	Yes		X 1	X 1
3	What is subject to a patent application in Europe	Yes ²		X 3	
4	Sub-assembly and assembly drawings, PBS, Types of connexions and methods of assembly, All technical documents not covered by industrial property	Yes	×	X	X

Notes:

- 1. At the condition that manufacturing is performed by the inventor
- 2. Supplier shall inform CNRS of his intentions. Disclosure after patent application.
- 3. Licence of use is royalty free for CNRS, worldwide

Status for XFEL prototypes

Pair no1 received Feb 28th from TOSHIBA

Pair no2 received March 5th from ACCEL

Pair no3 abandonned: E2v decided to give up (2 weeks before final review!)

Better now than during production!

5

Next Actions on prototypes

- · RF condition prototype pairs: → analyze results
- dismount couplers and inspect inside/outside → quality evaluation and ranking

Call for tenders for XFEL couplers

- · based on:
 - > functional specifications
 - > organizational requirements pointed out by indus. studies:
 - management
 - documents
 - logistics
- known candidates:
 - > 2 industries which took part in industrialization studies: ACCEL + TOSHIBA
 - > 2 other industries: CPI (60 prototypes) + THALES (2 prototypes)

Scenario for couplers production - XFEL

Principles: · 2 industrial contracts: each for 400 couplers Separate production at each industry Limit of responsibility · Responsibility of industry includes RF conditioning for industry Saclay Orsay (IRFU) Type 1 Type 1 (LAL) Cryomodules 1 RF Conditioning 4 pairs/week assembly Manufacturing station Assembly • 1.3 GHz tuning · Cavity string assembly RF conditioning · Cryomodules assembly Type 2 Type 2 acceptance tests dismount Clean rooms operations: Ship · pack (double bag) · wash 1/week · rinse · ship or store At each industry: · dry · assemble · vacuum pumping · He leak test bake **DESY** Cryomodule test

Example of systems engineering result

Prototype design for motorized tuning

Industrial design

Design to minimize assembly time

(original design: counter flanges + 14 screws

Waveguide to coax interface part

Copper + stainless steel + brass: <u>13 parts</u> brazed and soldered

Al alloy: <u>1 single part</u>

- Prototypes: machined from single block

- Mass production: casting

Cost reduction was one of the main objectives:

Phase 1: functional analysis of existing design Do Functions & requirements for each sub-assembly, each part Analysis of requirements for each interface Functionality of global breakdown: this - analyze limits of each sub-assembly - what are the purposes of this design? Again systems engineering Phase 2: - reduce number of parts for - reduce number of junctions - reduce number of different junctions, types of junctions ILC design for manufacturability Phase 3: analysis of manufacturing method for each part: - prefer deformation process instead of material removal process - optimize design of parts connected to interfaces (functional analysis results) lean manufacturing methods Phase 4: - optimise the design in terms of functions - analyse bar chart of components costs: concentrate efforts of cost reduction on most expensive components - think about production with less of everything: . less human resources, less specific competences . less manufacturing equipments and space . less raw material, less tooling & jigs . less stock, less spares, less energy, less waste Phase 5: analysis of final assembly - decompose assembly operations in successive sequences - what are the consequences of assembly on each component? - what parts could be simplified?

111

S. Prat SCRF meeting Fermilab April 21-25, 2008

- how to save manpower and assembly time?

Costs objectives versus quantity

Number of parts

	Prototype coupler	XFEL coupler	ILC coupler
Cold assembly	13	9	5
Warm assembly	22	14	9
Total	35	23	14

→ Industrialization studies for ILC couplers is strongly recommended !!!

Effect of mass production on unit cost and toolings cost (estimation)

Results of industrialization studies

Project cost breakdown for 800 couplers

Tasks at industry:

 1×800 versus 2×400 : save 10% on total

April 21-25, 2008

Manufacturing cost breakdown for materials and processes (XFEL)

Total raw material cost ~ 20 %

Cost breakdown for subassemblies (XFEL)

Bar chart for each part

This is the basis for future round of cost reduction: \rightarrow concentrate efforts on expensive items

April 21-25, 2008

