S1Fermilab, S1-Global & Cooperation with Fermilab ## Shekhar Mishra Fermilab #### Summary Slide From Sendai, S. Mishra - US plan for ILC Cavity and Cryomodule remains same as projected during the RDR phase with the following exception - We have considerably reduced the number of Cavities we will fabricate, process and test. - We have reduced the number of CM to ~1/yr. - We would continue to develop infrastructure to test 1 RF Unit with electron beam (not ILC beam) - We would continue to develop infrastructure for - Cavity processing and testing - Cryomodule fabrication and testing - Our goal is to be ready for "a" project by 2012 | 1.3 GHz Cryomodules | | | | _ | | | _ | | | | | | | | | | | | | - | | | |--|---------|----------|--------|--------------|----------|----------------|----------|-----------|--------|-------------|--------|-------|---------|--------|----------|---------|---------|-------|--|--|---|-------| | U.S. Fiscal Year | 2008 | | | _ | 2009 | | | | 2010 | | | 2011 | | | | 2012 | | | 2013 | | | | | CM1 (Type III+) | \perp | $-\!$ | | | Assembly | in FY07 | | in | stall | | | | | | | | | | | | • | • | • | | | | | | Test | | | | | CI | VI1 t | est@ | NML | | | | | | | | | - | | | | | | | CM2 (Type III+) | | | | | | | | | | | | | | | | | | 22 | | | 10 | | | Cav Processing + VTS | | | | | | | | | | | | | | | | | | | E | | | | | Dressing & HTS | Assembly | | | | | | | | | | install | | | | | | | | | 1 | | | | | Test | | | | | | | | | | | | S1 D | emo@ | NML | | | | | | | | | | CM3 (Type IV) | Design & Order Cav & CM Parts | | | D | esign | Or | der | Cav | & CM | parts | | | | | | | | | | | | | | | Cav Processing + VTS | Dressing HTS | Assembly | | | | | | | | | | | | | | | install | | | | | | | | | Test | | | | | | | | | | | | | | | | S1 | Demo | @NM | L | | | | | CM4 (Type V) => Pattern Repeat | s (Goal | I = 1 CM | /month | сара | bility) | | | | | | | | | | | | | | | | | | | Design & Order Cav & CM Parts | | | | | | esigr | า | | | Order | r Cav | & CM | parts | | | | | | | | | | | Cav Processing + VTS | Dressing HTS | Assembly | | | | | | | | | | | | | | | | | | insta | II | | | | | Test | | | | | | | | | | | | | | | | | | | 1 | Repla | ce Type II | + | | | | | | | | \dashv | | | | | | | | | | | | | | | | | | NML Beam | | | | | | _ | | | | | | Bean | n (avg | ILC | current) | | | | | | III. | C Bea | | 10 MW RF unit test | | | | | | _ | | | | | | | | | | | | S2 F | RF uni | t test | | | | Px β=0.8 CM (Project X R&D Plan | 2) | | | - | | \dashv | | | | | | | | | | | + | + | | | - | | | Design & Order Cav & CM Parts | ĭ | | | П | esign (| Dv C | 'allah F | =ffort) | Order | Cav | a cm | narte | | | | + | + | + | 1 | | | | | Cav Processing + VTS | | | | - | esigii (| FXC | ollab L | _iioit) | Order | Cav | C CIVI | parts | | | | | | | | + | -+ | | | Dressing HTS | | | | | | \dashv | | | | | | | | | | | | | | | - | | | Assembly | | | | | | + | | | | | | | | | | | | | | | install | _ | | Test | | | | -+ | | \dashv | | | | | | | | | | - | + | 1 | | | tes | r.f | | 1631 | 1 | | | -+ | | | | | | | | | | | + + | - | + | + | + | | 103 | ot . | | S1 Global (2 Cav - Funding so | urce n | ot yet | detern | nined |) / | | | | | | | | | | | | | | | | | | | Cav Processing + VTS | | | | | (| | | | | | | | | | | | | | | | | | | Dressing & HTS? | - | New SRF Infrastructure C | onsti | ructio | n (fur | <u>ıdinç</u> | g limit | ted |) | | | | | | | | | | | | | | | | | U.S. Fiscal Year | | 200 | 8 | | | 200 | 9 | | | 20 | 10 | | | 20 |)11 | | 2 | 012 | | | 2013 | Nb Scan/Cavity Fab Upgrade | | | | D | esign | F | Proc | ure & | Insta | II | Add CM Ass'y Capacity | | | | | | | | | | | | | | | | | - | Desi | gn | Procu | ire & Ins | stall | | VTS 2 & 3 Upgrade | | | | | esian | | Proc | ure I | nstall | & Co | mmie | sion | | | | + | + | + | | | -+ | - | | VIO 2 & 0 Opgrade | | | | | Jaigii | | . 50 | a 1 0 , 1 | Jocan | <u> </u> | | | | | | \perp | | | | | | | | HTS 2 Upgrade | | | | | | | | | | | | | Desig | jn 💮 | Procure | , Insta | II & Co | ommis | sion | | | | | NIMAL E-SIGN. | | | | | | | -4-1 | | | | | | | | | | | | | | | - | | NML Facility | - | | | P | rocure | e, in | stail | & Co | mmis | sion | | Bear | n Avai | liable | | | | | | | | | | | | - | | - | | - + | | | | | | _ | | | - | | | + | + | _ | | | | CM Test Stand | | | | - 1 | 1 | 1 | į | | Desig | n : | | Proc | ure Ir | nstall | & Comm | iission | | | | 1 | | 3 | | CM Test Stand Add Cavity Proc Capacity | | | | \pm | | | | | Desig | yn <u> </u> | | Proc | ure, Ir | nstall | & Comm | | | | | | | | # **High Gradient Cavity for CM** - CM1 was assembled at Fermilab in FY07 using a kit supplied by DESY. - It is waiting for infrastructure at ILCTA_NML for installation and testing - CM2 Cavity inventory: - Fermilab in collaboration with Jlab, Cornell and ANL has 5 high gradient cavities already processed. - Fermilab has 26 (ILC length, 9-cell) cavities on order. 20 from ACCEL and 6 from AES. - 8 cavities have arrived from ACCEL - Rest is expected later this year. - In FY08, with remaining US-ILC funds Fermilab has restarted the 1.3 GHz cavity processing. - We are planning ~15 cycles using the cavities from ACCEL and will be used to populate CM2. - These processing will use S0 recipe but will not be "Tight Loop" - FY09 and Beyond: US proposes a plan of about ~50 processing and testing cycles to support of High Gradient R&D and CM fabrication. - These cavities must be processes in a way that they are useful for CM # Cavity for CM2: 9-cell Test Results Average A6-8, AES2,4 = 32 MV/m A9 reprocess at Jlab # S1 Cryomodule (CM2) Plans - Cavity: We are going to use - Already existing 5 high gradient cavities (AC6,AC7,AC8, AES2 and AES4) - 3 from the batch we 6 will process in 08 and early 09. (AC10,11,12,13,14,15) - This should give us 8 high gradient cavity with an average gradient of lager than >32 Mv/m - Fermilab has ordered the CM2 cold mass parts from Zanon in collaboration with INFN - This will be Type-III+ Cryomodule (same as CM1-DESY Kit). - Tuners are being fabricated under Fermilab-INFN MOU - All the major hardware except He vessels will be here by Fall 08. - Fermilab has "finalized" the design of He Vessel for this CM. - 3 He vessel will be ordered in FY08 - Plan is to dress and Horizontally test at least one 9-cell cavity in FY08. - In FY09 we will dress and HTS cavities for CM2 - Build CM2 in FY09. Goal: Make a S1 Cryomodule in US by early CY10. #### S1 Global - ILC GDE Project Managers have proposed construction of a Cryomodule at KEK - With global <u>cooperation</u> and <u>collaboration</u> - To meet the S1 goal of 31.5 MV/m in a 8 cavities Cryomodule at an earliest possible date. - It is a good idea to show that we can work together to achieve this highly technical goal. - A possible step towards plug compatible CM ??? - Issues that should be addressed - Technical/Engineering design of the S1G Cryomodule, Cavity interfaces, string assembly etc. etc. - Design variations in coupler, tuner etc. - Review of the technical design and schedule - Detailed understanding of the International technical resources needed for successful fabrication and testing of S1G-CM #### S1 Global at KEK ## S1 Global Plan: Sendai Meeting ### **US Contribution: S1 Global** - US has been asked to provide 2 Dressed Cavities for the S1 Global program. - These will be from the current batch of ILC cavities (AC16 and AC17). - Standard TESLA Shape cavity just the symmetric end tubes. - Based on our analysis of Fermilab and US schedule (without worrying about resources to support this activity) we can make these two cavities available by the end of 1st quarter of 2010. - Alternates: - Fermilab could make it available to KEK without processing late FY08. - US process and Vertical test these two cavities - They could be available by end of FY09. ## Summary - US plan for ILC Cavity and Cryomodule remains same as projected during the RDR phase with the following exception - We have considerably reduced the number of Cavities we will fabricate, process and test. - We have reduced the number of CM to ~1/yr. - Fermilab is getting ready to test DESY supplied and Fermilab assembled CM1. - We are making progress towards construction of CM2 (Potential S1 candidate) - Fermilab will participate in S1GCM, there are several issues that should be discussed.