April 23: Cryomodule/ Cryogenics

Time	Title	Presented by
8:00	CF&S Technical Area WebEx Meeting	Marc Ross et al.,
9:00	Cryomodule: functional parameters and interfaces	N. Ohuchi/H.Carter
9:30	Plug-compatibility (for cavity and cryomodule, HLRF): -Interfaces (CAD-work boundary condition) of plug-compatible design - (expected) Compatibility of ILC and Project-X cryomodules -Parameters tables for interfaces	D. Mitchell S. Nagaitsev H. Hayano and N. Ohuchi
10:45	Break	
11:00	Discussions Conclusion/Consensus (Table filled) and Further study required	Led by Ohuchi and Carter
12:30	Lunch	
13:30	Helium vessel issues for dressed cavities Introduction, comments helium vessel issues JLab report (Nb-stainless joint, pressure vessel issues) Brief comments on cryomodule "crash test" at DESY Comments and discussions for further works	T. Peterson Ed Daly L. Lilje H. Nakai, K.Jensch
15:00	Break	
15:30	Thermal optimization for cryomodule/cryogenics -5 K shield study at TTF cryomodule design -5 K shield study at STF cryomodule design -Lowering radiation shield (80K) temperature Discussions and conclusion/consensus	P. Pierini N. Ohuchi N. Ohuchi led by Ohuchi/Peterson)
18:00	SCRF dinner ??	1

Some Comments on Helium Vessel Issues for Dressed Cavities

Tom Peterson 23 April 2008

Causes of cavity helium bath pressure excursions

- Worst case location is probably always the cavity helium vessels in the string far from the cryogenic plant
- Purification and cool-down flow
- Warm-up flow
- Compressor failure (e.g., power outage)
- Control and/or valve failures
- Loss of insulating vacuum while cold
- Loss of cavity vacuum while cold

Peak warm pressure

- Compressor suction set pressure
 - 1.2 bar
- Control margin
 - +/- 0.2 bar
- Relief set pressure margin
 - 0.3 bar (a judgment here, would like 0.5 bar)
- Suction relief set pressure
 - 1.7 bar
- Pressure drop from far string
 - -0.1 bar
- Peak warm pressure
 - 1.8 bar (note that 0.5 bar set P margin ==> 2.0 bar)
- We have selected 2.0 bar warm design P

Peak cold pressures - analysis

- Film boiling of helium with 60 K surface is about 2.5 W/sq.cm.
- Heat flux of 10's of KW to liquid helium
- Mass flows of many kg/sec, very dynamic and non-steady situation
- Pressure drops to vent may result in peak pressures of 3 - 4 bar locally
 - Even if vent opened at much lower pressure
- TTF, TESLA, and XFEL analyses have been done, as well as for many other systems
- Test data are necessary to validate analyses

Peak cold pressures in TTF/ILC

- Analyses of TTF and TESLA back in the early 1990's indicated that worst-case loss of vacuum might lead to pressures near 4 bar cold
- Input parameters
 - Heat flux as limited by
 - Rate of air inleak
 - Suface heat transfer
 - Total surface area involved
 - Can be limited by vacuum breaks, fast valves
 - Initial conditions
 - Note that 4.5 K just after filling is the worst case!

Peak cold pressures - tests

- Loss of vacuum to air
 - "Safety Aspects for the LHe Cryostats and LHe Containers," by W. Lehman and G. Zahn, ICEC7, London, 1978
 - "3.8 W/sq.cm. for an uninsulated tank of a bath cryostat"
 - "0.6 W/sq.cm. for the superinsulated tank of a bath cryostat"
 - "Loss of cavity vacuum experiment at CEBAF," by M. Wiseman, et. al., 1993 CEC, Advances Vol. 39A, pg 997.
 - Maximum sustained heat flux of 2.0 W/sq.cm.
 - LEP tests and others have given comparable (2.0 to 3.8 W/sq.cm.) or lower heat fluxes
 - New! "Crash" tests at CMTB at DESY

Dressed cavity vessels as pressure vessels

- Helium vessels (generally) fall under the scope of pressure vessel codes
- Standard pressure vessel codes are difficult to apply
 - Non-standard materials
 - Various heat and chemical treatments
 - Non-standard weld/braze joints
- It would be nice to compile some generally applicable material information

Request for information

- 1. What room-temperature yield stress, ultimate stress, and/or "allowable" stress, do we use in analysis and documentation for dressed SRF cavities, and based on what sources of information?
- 2. Similarly, what low temperature mechanical properties do we use for the various materials, and based on what sources of information?
- 3. How do we address the uncertainties in niobium properties that result from the various heat and chemical treatments?
- 4. How will we qualify joint designs, such as welds and/or braze joints, including welds between dissimilar materials.

Estimating allowable stress

- For our Niobium, RRR = ~300, after forming and heat treating at 800 C, conservatively assume:
 - Ultimate Stress ST: 95 MPa
 - Yield Stress SY: 50 MPa
- Allowable stress per ASME Pressure Vessel Code, Section VIII, Division 1, formula
 - Lowest of either ST/3.5 or 2/3 x SY, with another 0.85 factor for welded pipe or tube. So ST x 0.85/3.5 = 95 x 0.85/3.5 = 23 MPa determines our allowable stress.

Summary of room temperature mechanical properties for pressure vessel analysis

	Tensile strength ST (MPa)	Yield strength SY (MPa)	Allowable (MPa)
Example Š 3.9 GHz cavity	150	~50	
Niobium as received			
RRR 300 Nb after forming,	115	~50	
welding, BCP, 800 C heat treating			
from literature			
Nb assumed for Fermilab analysis	95	~50	
Allowable for Nb per ASME code			23
formula (for welded pipe or tube,			
ST/3.5 x 0.85)			
KEKB cavity parent Nb material	162		34
KEKB cavity welded Nb part	118		30
Titanium grade 2 from ASME,			83
Section 8, Div 1, tables			
NbTi (45% Nb, from ATI Wah	546	480	
Chang)			
Allowable for NbTi per ASME			133
code formula (for welded pipe or			
tube, ST/3.5 x 0.85)			