Plans and Timetable of LLRF at NML

B. Chase

April 24, 2008

Revised NML Technical Plan

J. Leibfritz

- Budget Reduction
- FY08 Funding Cuts, Manpower Reduction, Uncertain Funding Profile
- Changed Overall Scope/Plans
- New Goals/Scope
- Meet RF Test Requirements for one RF Unit for ILC \& Project-X
- Fit Everything Within Existing Building
- Cryomodules shifted upstream approximately 8 meters
- Space for Injector and Test Beamline reduced
- Capability to Expand to our Original ILCTA Plan is Maintained
- Large Overall Cost Reduction
- Elimination of Building Extension (~\$5M)
- Elimination of Cryoplant (~\$13M)
- Initial Injector design does not include Laser Hut, Laser System, CC1, 3.9 GHz Cavities and associated RF systems and Cryogenic connections.
- Simpler Injector Design (Does not require moving Photoinjector)

New Overall Layout of NML

Current Picture of NML Facility

In
 IIL
 Redefined Short Term Goals

- Budget cuts
- Less money and manpower
- Many unknowns
- Change in directions
- Change in Control system >ACNET
- Focus
- Basic LLRF support for cryomodule testing is highest priority
- Resonance control - LFD
- Reference line
- Electronics self calibration
- QI and Pk setup
- Station to station error pass forward
- System integration
- Cost reduction
- Beam tests when available
- Beam loading compensation
- Beam based calibration

LLRF Plans for 08

- Install Master Oscillator and Reference line
- Test stability of line
- Interface MO diagnostics into the control system
- Delivery of Waveguide from SLAC
(6/08)
- Measurement of waveguide couplers
- 1st Cryomodule Delivery to NML
(7/08)
- Install cable plant and measure all cables
- Install LLRF systems and cable plant for CM1
- Test calibration schemes for cables and electronics
- Begin 1st Cryomodule RF Tests (Warm)
- Support warm testing
- CM1 Ready for Cooldown
(12/08)
- Begin Cold RF testing
- Piezo control testing
- Ql and Pk calibration

IIL

LLRF Hardware

- 1st Cryomodule
- Master Oscillator and Distribution
- (3) MFC cards
- (4) Downconverters
- (1) VXI crate
- (1) 5500 CPU
- (1) PMC-UCD
- Timing system interface
- CC2 \& RF Gun - shares the crate
- (2) MFC or ESECON cards
- (2) Downconverters
- (1) VXI or VME crate
- (1) 5500 CPU
- (1) PMC-UCD
- Timing system interface

8 Ch Receiver and MFC

Fermilab

High Stability Reference Line

L

Regulate phase of Tap\#1 to regulate the entire line.

Temperature Coefficient of Electrical Length
LCF78-50J-TC

Drift Calibration

Final Observations

- NML while reduced in scope is still a very important test bed
- FNAL LLRF efforts will be spread over HINS, ProjectX, ILC and other internal projects.
- LLRF R\&D successes will translate to performance improvements and cost reductions

