LCFI in April 2008

- Introduction
- Physics studies
- Sensor design and testing
- Mechanical design of ladder and vertex detector
- Plans for the future
- Summary

Introduction

- The case for the (I)LC remains as strong as ever.
- Two examples (SLHC kick-off meeting 9th April):
 - The LHC will allow measurement of ratios of many Higgs BRs to about 20%, the SLHC to 10%.
 - The SLHC will allow measurement of the Higgs self-coupling to about 20%.
- Is this enough?
- May well soon become clear that answer is no...and the way forward is a LC/the ILC

- Achieved because of clean interactions, understood initial state...
- ...and first class flavour ID.

Introduction

 LCFI studying physics and designing sensors (CPCCD and ISIS), support structures, ancillary electronics for the vertex detector....

• ...of the fourth, SiD...

Physics studies – the LCFI Vertex Package

E.g. $e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^-$ jet jet.

Vertex region:

 Challenge is to associate all charged tracks with correct vertex in high track density environment.

LCFI Vertex Package – recent work

- Understand package in context of complete detector software environments.
- E.g. apparent poorer performance with Pandora PFA than Wolf in LDC framework:

This was traced to differences in the tracking settings used for the PFAs and "fixed"...

...without spoiling the excellent performance of Pandora.

LCFI Vertex Package

- Improvements to and tuning of the package are ongoing.
- Developed (semi)automatic tuning of flavour/charge ID parameters.
- Adding routines to determine quality of charge tag.
- Allows e.g. choice of best charge in $e^+e^- \rightarrow b \overline{b}$ events in which both jets have same measured charge.
- Quality estimator based on product of charge purity obtained for variables used in flavour/charge determination.

• E.g. dependence of quark charge purity at Z peak on L/D value for jets in which 2 vertices found:

LCFI Vertex Package

- Important input to flavour tag is "joint probability", probability that all tracks originate at the IP.
- Need to know impact parameter distribution of tracks truly from the IP.
- Results so far have used distributions from fast MC
- New routines now added to derive parameters from fit.

LCFI Vertex Package

- So far K⁰ and L decays have been removed in flavour ID process using MC "truth" information.
- Routines now being developed to identify these using track information.
- Work also ongoing on removing tracks resulting from interactions in the material of the detector.
- First results using Marlin with input from Jupiter and org.lcsim obtained.

- Investigations of Benchmark reactions underway, including studies of:
 - $\bullet \ e^+e^- \to t \ \overline{t}.$
 - $e^+e^- \rightarrow ZHH.$

 Higgs ranching ratios: expected precision ~ 1% for b, ~ 10% for c and g...

Sensors for the VXD – Column Parallel CCDs

Achieve necessary readout speed with CCDs using column parallel architecture:

 Must drive image register at 50 MHz to readout in 50 µs.

Testing the CPCCD at high speed

• CPC2-10 wire bonded to motherboard with transformer drive.

 ⁵⁵Fe X-ray signals observed at up to 45 MHz.

High speed ladder operation with CPD1

 Careful tuning of clock delays improves signal sampling:

Delay (ns)	15	18.5
Sampling points		
Noise (e ⁻)	83	73

Here using 2 sections of CPD1.

Can now operate at 20 MHz with significantly reduced noise.

Noise-Temperature dependence

Towards a prototype ladder

 CPC2 with CPD1 driver chip and CPR2 readout chip:

File Vertical Timebase Trigger Display Cursors Measure Math Analysis Utilities Help

1.5V_{PP} Clocks

Future CPCCDs – reducing demands on clock

- Many ideas to reduce necessary clock voltage and inter-gate capacitance, developed by LCFI/e2v – CPC-T structures.
- E.g. open phase CCD:

Initial concerns...

...proved unfounded:

All but the "stepped nitride" structures have passed first tests!

CPC-T

- All 29 variants now need study.
- Six month programme.

Sensors for the VXD – In-Situ Storage Image Sensor

Alternative to fast readout: store signal in pixel during bunch train.

substrate (p+)

- Drive at 20 kHz during bunch train.
- 1 MHz column parallel readout between bunch trains.
- Charge to voltage conversion when least affected by EMI.

 ISIS1, "proof of principle" device built by e2v.

- 6 × 16 array of ISIS cells, each with 5-pixel buried channel CCD storage register.
- Cell pitch $40 \times 160 \ \mu m^2$, no edge logic.
- Chip size $6.5 \times 6.5 \text{ mm}^2$.

Tests of ISIS1 with p-well

The ISIS1:

Tests of ISIS1 with p-well

- Does p-well reflect charge?
- Study using ⁵⁵Fe X-rays (5.9 keV, attenuation length 30 μm, charge released in 1 μm sphere).
- Look at ratio of charge collected on photogate to charge collected on storage pixels.

Tests of ISIS1 with p-well

- High p-well doping, storage register protected, p-well works!
- If increase clock voltage, get punch through under in-pixel CCD, R drops.
- Lower p-well doping, charge reflection decreases.
- No p-well, R dependent on gate geometry and voltages.
- Publication being prepared.

Tests of ISIS1 in Beam

- ISIS1 telescope constructed with five ISIS1 chips.
- Sensors have:
- 16×16 pixels, each of $40 \times 160 \ \mu m^2$.
- Five storage cells per pixel.
- Active area $0.56 \times 2.24 \text{ mm}^2$.
- Accurate alignment required!
- Tests performed in DESY
 1...6 GeV e⁻ beam.
- Readout speed 2.5 MHz, (ILC needs 1 MHz).

Tests of ISIS1 in Beam

- Calculate pedestal for each pixel.
- Noise from standard deviation after pedestal subtraction.

- Clusters 5σ seed, 2σ neighbours.
- Clusters small: little charge sharing in x ("long") direction.

S/N ~ 37,
$$\sigma_y = 11.6 \ \mu m_z$$

- Attempt made to map performance of ISIS1 pixels.
- Resolution achievable with DESY test set-up inadequate.
- High energy beam test planned last week August at CERN
 - ♦ 3 standard ISIS1
 - ◆ 3 ISIS1 with p-well
 - Use EUDET telescope for tracking (~ 3 µm predicted position precision).
- Supplement with laser studies.

ISIS2 Status

- Impressive progress made with design of ISIS2.
- Pixels $80 \times 10 \ \mu m^2$, buried channel ~ 5 $\ \mu m$ wide.
- Top level design (logic, source followers...) now complete
- Some test structures will also be included (transistors, short CCD).
- Design discussed with e2v and now with Jazz engineers.
- Target completion date 30th April.
 Three months ago the LCFI team knew nothing about the tools needed to design this sensor...

ISIS2 chip layout

Even outputs (16 pads)

Due homage paid to the Egyptian gods...

Mechanical studies

- SiC foam promises to provide extremely stable VXD structures.
- Very good CTE match ensures excellent temperature stability.

 Investigating possibility of constructing entire VXD using SiC:

Issues of, machining SiC, choice of adhesive still to be solved.

Future programme

- Will seek funding within current grant for:
 - Completion of aspects of physics/Vertex Package work.
 - Studies of CPC-T and completion of some CPCCD work.
 - First tests of ISIS2.
 - Studies of CPR2A/B/C.
 - Testbeam measurements on ISIS1 with p-well.
 - Completion of current work on RVC foam, carbon fibre.

- Considering bidding for new funding for:
 - Continuation of work on and with the Vertex Package.
 - Further studies of ISIS2.
 - CPC2/CPR2A bump-bonding and testing.
 - Further investigation of SiC foams.
 - System design aspects of VXD.
- Considering how best to get these bids into and through the system...advice would be welcomed!

Summary

- Improvement and tuning of Vertex Package continues.
- User base broadening.
- Continuing to improve performance of CPC2.
- CPC-T tests starting.
- New readout chips CPR2A/B now available for testing.
- ISIS2 design nearly complete.
- Functioning of p-well in ISIS1 demonstrated.
- Further ISIS test beam planned at CERN for end August.

- Negotiating with Janet Seed to complete as much of current programme as possible.
- Developing ideas for proposal(s) for continued funding of aspects of the LCFI programme.