

CLIC – ILC R&D

- New CLIC parameters
 - revised in 2007
- CLIC detector R&D
 - specific to CLIC needs
- CLIC07 Workshop, October 2007
 - accelerator, physics & detectors
- CLIC ILC Collaboration
 - first collaboration meeting February 2008

CLIC

Major revision of CLIC parameters made in summer 2007

- final parameter optimization still ongoing
 - preparations for detailed report ongoing
- Basic changes
 - 30 GHz -> 12 GHz RF frequency
 - close to old NLC frequency (11.424 GHz)
 - easier to adapt NLC work and experience
 - lower frequency allows more relaxed alignment tolerances
 - 150 MV/m -> 100 MV/m
 - reduces breakdown rate and surface damages in RF accelerating structures
 - 50 km long LINAC allows 2 x 1.5 TeV = 3 TeV CM energy (was 5 TeV)
 - 0.5 ns bunch spacing, 312 bunches (= 156 ns bunch trains), 50 Hz (3 TeV)
 - optimized for maximum luminosity
 - was subject of various changes in the past: 0.667 ns -> 0.267 ns -> 0.667 ns -> 0.5 ns

Aim for feasibility and conceptional design report in 2010 (CDR)

врм

from 9 GeV to 1.5 TeV

CLIC Parameters I

Luminosity at 500 GeV similar to ILC/NLC

Parameter	Symbol	CLIC 3 TeV	CLIC 1 TeV	CLIC 0.5 TeV	ILC 0.5 TeV	NLC 0.5 TeV	Unit
Center of mass energy	E _{cm}	3000	1000	500	500	500	GeV
Main Linac RF Frequency	f _{RF}	12	12	12	1.3	12	GHz
Luminosity	L	5.9	2.25	2.24	2	2	$10^{34} \mathrm{cm^{-2} s^{-1}}$
Luminosity (in 1% of energy)	L _{99%}	2	1.08	1.36			$10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
Linac repetition rate	f rep	50	50	100	5	120	Hz
No. of particles / bunch	N _b	3.72	3.72	3.72	20	7.5	10 ⁹
No. of bunches / pulse	k _b	312	312	312	2670	192	
No. of drive beam sectors / linac	N _{unit}	24	8	4	-	-	-
Overall two linac length	l	41.7	13.9	6.9	22	14	km
Proposed site length	I _{tot}	47.9	20.1	13.2	31	32	km
DB Pulse length (total train)	t	139	46	23	-	-	μ s
Beam power / beam	P _b	14	4.6	4.6	10.8	6.9	MW
Wall-plug power to beam efficiency	ⁿ wp-rf	8.7	6.1	6.1	9.4	7.1	%
Total site AC power	P _{tot}	322	~150	~150	230	195	MW

CLIC – ILC R&D, LCUK Meeting / Birmingham

CLIC Parameters II

3x more energy loss due to beamstrahlung at CLIC w.r.t. ILC at 500 GeV

unavoidable at Linear Colliders in general: small beam sizes -> large beamstrahlung

Parameter	Symbol	CLIC 3 TeV	CLIC 1 TeV	CLIC 0.5 TeV	ILC 0.5 TeV	NLC 0.5 TeV	Unit
Transverse horizontal emittance	γε _x	660	660	660	8000	3600	nm rad
Transverse vertical emittance	γε _y	20	20	20	40	40	nm rad
Nominal horizontal IP beta function	β _x	4	20	15	20	8	mm
Nominal vertical IP beta function	β [*] y	0.09	0.1	0.1	0.4	0.11	mm
Horizontal IP beam size before pinch	× ×	40		142	640	243	nm
Vertical IP beam size before pinch	с [*]	1		2	5.7	3	nm
Beamstrahlung energy loss	δ _B	29	11	7	2.4	5.4	%
No. of photons / electron	n ×	2.2	1.2	1.1	1.32	1.3	-
No. of pairs (p _T ^{min} =20MeV/c, Î _{,min} =0.2)	N _{pairs}	45	17.1	11.5			-
No. of coherent pairs	N _{coh}	38	0.07	0.0001			10 ⁷
No. of incoherent pairs	N _{incoh}	0.44	0.09	0.05			10 ⁵
Hadronic events / crossing	N _{hadron}	3.23	0.29	0.1			-

CLIC luminosity spectrum

similar number of photons / electron at 500 GeV but higher energy per photon at shorter bunches (CLIC)

CLIC - ILC R&D, LCUK Meeting / Birmingham

Physics and Detectors WG @ CLIC07

2 sessions

- physics landscape and new studies

detectors

- part 1: invited speakers from the ILC community
 - overviews on status of ILC detector R&D
- part 2: CLIC specific detector studies
 - new detector ideas
 - engineering studies
 - detector simulation study

Physic	s & Detectors Wkg (09:00 ->11:55)	Chairpersor	: Michael Hauschild (CERN), Ron Settles (Max-Planck-Institut fuer Physik)
		Location:	<u>40-S2-B01</u>
09:00	Detailed discussion on backgrounds etc. (20') (🖦 <u>Slides</u> 🕏	1)	Daniel Schulte (CERN)
09:25	New ideas on EWSB (20') (<u>Slides</u> 🔁)		Christophe Grojean (CERN)
09:50	The road from LHC->SLHC->LC (20')		Michelangelo Mangano (<i>CERN</i>)
10:15	Heavy Higgs study (15') (<u>Slides</u> 🔁)		Arnaud Ferarri (Univ. of Uppsala)
10:35	c	offee Break (20')
10:55	Stau searches at CLIC (15') (ﷺ <u>Slides</u> 🔂 😫)		llkay Turk Cakir (<i>TAEA</i>)
11:15	Excited leptons at CLIC (15') (>>> Slides		Orhan Cakir (University of Ankara)
11:35	4th generation at CLIC (15') (ﷺ <u>Slides</u> 🔁 🔨)		Saleh Sultansoy (Sultanov) (TOBB Univ of Eco & Tech)

CLIC – ILC R&D, LCUK Meeting / Birmingham

Physics and Detectors WG @ CLIC07

the ILC/DESY part...

~35 participants

Physics & Detectors V/kg (Location: Main Auditorium) Chairperson: Michael Hauschild (<i>CERN</i>), Ron Settles (<i>Max-Planck-Institut fuer</i> (13:40 ->18:40)					
13:40	MDI Experience from the ILC (20') (Slides 5; Marchine Video; MDI Experience from the ILC (20') (Marchine Video (Marchine V	Karsten Buesser (DESY)			
14:05	ILC Pixel/microvertexing (20') (<u>Slides</u> 🔁)	Marc Winter (Institut de Recherches Subatomiques (IReS))			
14:30	ILC Tracking (20') (ﷺ <u>Slides</u> 1	Klaus Dehmelt (DESY)			
14:55	ILC Calorimetry (20') (🛬 <u>Slides</u> 🔁 🔨)	Erika Garutti (<i>DESY</i>)			
15:20	EUDET (15') (ﷺ <u>Slides</u> 🖾)	Joachim Mnich (DESY)			
15:40	Coffee Break (20')				
16:00	Calorimetry (crystals) (15') (ﷺ <u>Slides</u> 🔛)	Paul Lecoq (<i>CERN</i>)			
16:20	Time stamping (15') (ﷺ <u>Slides</u> 🔁 🔨)	Pierre Jarron (CERN)			
16:40	Pixel microvertex technologies (15') (>>> Slides 🔂 🔨)	Michael Campbell (CERN)			
17:00	3D silicon (15') (ﷺ <u>Slides</u> 🔁)	Cinzia Da Via (Brunel University)			
17:20	TOF (15') (See presentation 🔁)	Crispin Williams (Universita & INFN, Bologna)			
17:40	Interaction Region Engineering at ILC: Push-Pull option (15) (ﷺ <u>Slides</u>) Alain Herve (<i>CERN</i>)			
18:00	Detector Services Design for push-pull option (15) (>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	Andrea Gaddi (<i>CERN</i>)			
18:20	SID detector at 3 TeV (15') (ﷺ <u>Slides</u> 🔁 🔛)	Marco Battaglia (UC, Berkeley & LBL, Berkeley)			

the CLIC/CERN part...

CLIC - ILC R&D, LCUK Meeting / Birmingham

CLIC Detector

CLIC detector = 90% ILC detector + 10% CLIC specifics

- CLIC is profiting a lot from ILC detector R&D
 - (= ILC community are also working for a CLIC detector...)

Major CLIC – ILC differences (the 10% CLIC specifics)

higher energy -> particle jets become more dense

- need tracker with better double track resolution
 - TPC was disfavoured some years ago (double hit resolution of classic TPC ~1 cm)
 - thanks to ILC R&D now ~2 mm TPC double hit resolution (GEMs or MicroMegas)
 - TPC could be reconsidered again as CLIC main tracker as alternative to full Si tracker
- **need calorimeters with higher granularity**
 - Particle Flow concept (favoured by most ILC detector concepts) requires to identify individual calorimeter EM and hadronic clusters
 - alternatively: forget particle flow, build calorimeter with (hardware) compensation = DREAM concept
- much shorter bunch spacing: 0.5 ns (CLIC) vs 337 ns (ILC)
 - need "time-stamping": identification of tracks from individual bunch crossings
 - if no time-stamping -> overlay of physics events with hadronic background from beamstrahlung
 - what resolution is needed? what is the degradation in physics?

- Ideal detector would be capable to identify particles from individual bunch crossings in all detector components
 - not realistic, most detectors don't have 0.5 ns resolution or better

Way out

- add a few dedicated time stamping layers
 - Fast silicon pixel layers for tracking
 - TOF layer with high granularity in front or inside calorimeters
 - ALICE Multigap RPCs have time resolutions of <100 ps

ALICE-TOF has 10 gas gaps (two stacks of 5 gas gaps) each gap is 250 micron wide Built in the form of strips, each with an active area of 120 x 7.2 cm², readout by 96 pads

CLIC - ILC R&D, LCUK Meeting / Birmingham

Time Stamping - Calorimeters

Fast TOF available already today

- need to optimize for CLIC

- granularity, segmentation, material, electronics (type/power)
- how fast do we really need? faster electronics -> higher power consumption

CLIC – ILC R&D, LCUK Meeting / Birmingham

Why Time Stamping?

- Overlay of physics events with background events from several bunch crossings
 - degradation of physics performance
- Main background sources from beamstrahlung
 - e+e- pairs from beamstrahlung photons
 - Iow p_T , can be kept inside beam pipe with high magnetic field, B > 3 T
 - hadrons from 2-photon collisions (beamstrahlung photons)
 - \circ can have high p_T, reach main tracker and confuses jet reconstruction
 - typically ~O(1) hadronic background event per BX with $p_T > 5$ GeV tracks

CLIC – ILC R&D, LCUK Meeting / Birmingham

Time Stamping - Tracking

Longitudinal bunch length ~ 10 µm

- no way to identify different events/tracks due to different vertex positions
 - at LHC: much longer bunches, collisions distributed along z-axis + can be identified
- only way at CLIC: need precise time measurement (< 0.5 ns) in tracker
- limitations
 - time stamping requires fast detector/electronics
 - but cannot affort too many channels/pixels (high power consumption)

Basic idea

- have few time stamping layers
 - fast, larger pixels, not so many channels
 - Hybrid pixel, 0.3 x 0.3 mm²
- 🗢 + "standard" tracker layers
 - "slow", small pixels, many channels, precise
 - Monolithic sensor pixel, 0.02-0.05 mm segmentation
 - integrate of full bunch train (156 ns)

Michael Hauschild – CERN, 18-Apr-2008, page 11

2 vertices in 2 different BX's in one train

Microvertex plane

Time stamp plane

Time stamp plane

All vertices superimposed at IP

2 events at different time stamps in the same train

Time Stamping - Prospects

- Preliminary results on 130 nm Front End circuits encouraging
 - → time resolution < 100 ps for 300 µW power on 0.3 x 0.3 mm² pixel
- Fast sensors also encouraging 3D versus planar particle --> can reach 1 or 2 ns in 3-D silicon n* p* n* p* n* ~ 500 mm **Proposal to build demonstrator** time stamp module for NA62 m i n* Active edge ~4µm $\mathbf{2}$ HAC Si pixel detectors ANTI 1-12 RICH [†]MUV M with time stamp information 1-Target TAX measurement $K^+ \sim 75 \text{ GeV}$ of rare Kaon O-VACUUM decays: Achromat 1 CEDAR K+ $\rightarrow \pi^+ \nu \nu$ Ne -1-GIGATRACKER 1 atm **ANTIO** IRC LKr Straw Chambers -2-Zm 150 25050 100 200 CLIC – ILC R&D, LCUK Meeting / Birmingham Michael Hauschild – CERN, 18-Apr-2008, page 12

CERN participation in EUDET

EUDET FP6 Programme to provide infrastructure for ILC detector R&D

- small CERN participation, ~1.2 FTE CERN staff
- Work packages with CERN involvement
 - - microelectronics user support
 - VALSIM
 - optimisation of hadronisation process in GEANT4
 - PCMAG
 - magnetic field map for magnet in DESY test beam
 - TimePix
 - development of pixel chip for TPC pixelised readout
 - TPC electronics
 - development of TPC pad readout, aiming for combined analog/digital readout fitting behind 1x4 mm² pads

EUDET highlights

PCMAG field map campaign at DESY 2007

TPC pad readout, programmable amplifier 130 nm technology

Timepix chip, 256 x 256 pixels, 55 µm² per pixel, individually programmable: time or charge

CLIC - ILC R&D, LCUK Meeting / Birmingham

CERN Contribution to FP7 LC tasks

Test beam for combined linear collider slice tests

- providing beam, large magnet, general infrastructures etc.
- Continued support for TPC electronics
- Participation in Project Office for linear collider detectors
 - engineering tools for Project Office, design support for test beam set-up
- Test-case of LC project tools on CLIC forward region example
 - together with DESY and ILC forward study
- Software tools
 - geometry and reconstruction tools
- Microelectronics user support

CLIC – ILC Collaboration?

First discussions following a visit of Barry Barrish at CERN in November 2007

http://www.linearcollider.org/newsline/archive/2007/20071213.html

independent of UK/US financial crisis but even more disirable now

Subjects with strong synergies

- civil engineering and conventional faclities
- -> beam delivery systems & machine detector interface
- detectors
- cost and schedule
- beam dynamics & beam simulations including low emittance transport

CLIC – ILC Collaboration

First CLIC – ILC Collaboration meeting, 8th Feb @ CERN

http://indico.cern.ch/conferenceDisplay.py?confld=27435

- about 35 participants from accelerators and detectors

Prepared by

 Marc Ross, Nick Walker, Akira Yamamoto (ILC-GDE project managers), Jean-Pierre Delahaye (CLIC study leader and ILC-GDE member)

Objectives

- review selected subjects + define tasks of common interests
- once defined, nominate contact persons for each subject (convenors)
 - prepare plan af actions including schedule

General remarks

- large number of common issues on each of the five selected subjects
- possible common studies limited by available resources
- LHC experinece extremely useful

CLIC – ILC R&D, LCUK Meeting / Birmingham

How to collaborate?

Presently (for each sub-system)

- ILC team working on ILC system with ILC beam at 500 GeV
- CLIC team working on CLIC system with CLIC beam at 3 TeV and scaling down to 1 TeV and 500 GeV
- Fruitful excahnegs between technical experts
- different designs of sub-systems for (not always) good reasons

Possible future

- CLIC & ILC teams working together on CLIC and ILC systems at 500 GeV
- identify together if same design/technology can be used
- understand why and what necessary differences
- define together necessary modifications of the sub-system for the upgrade in energy to 1 TeV for ILC and 3 teV for CLIC

Connect the 2 communities such their projects are comparable

CLIC – ILC Detector R&D L. Linssen

Define a CLIC detector concept at 3 TeV (based on ILC concepts)

Detector simulations

- simulation tools to be used by ILC and CLIC (WWS software panel)
- validation of ILC detector options for CLIC at high energy, differen time structure and different backgrounds
- 1 TeV benchmark studies to provide overlap
- compare performance using defined benchmarks (e.g. WW/ZZ separation)

EUDET/DEVDET (infrastructure for LC detector R&D)

- microelectronic tools
- 3D interconnect technologies (for integrated solid-state detectors)
- simulation and reconstruction tools
- combined test with magnet LC sub-detectors

• TPC

- TPC performance at high energies (>500 GeV)
- TPC read-out electronics

Calorimeters

• dual read-out calorimetry (feasible at LC?)

CLIC – ILC R&D, LCUK Meeting / Birmingham

Machine Detector Interface

General layout and integration

- common meeting/review required
- common engineering tools for detector design in preparation (DESY, CERN, IN2P3, FP7)

Background and luminosity studies

- strengthen support
- Masking system
 - constraints on vertex detector

Detector field

- need field for CLIC
- Magnet design
- Common simulation tools for detector studies
 - need to review what is available
- Low angle calorimeters
- Beam pipe design (LHC)
- Vaccum etc. (LHC)

CLIC – ILC R&D, LCUK Meeting / Birmingham

Background and Luminosity Studies

Common simulation tools

D. Schulte

- BDSIM 0
 - integration into GEANT?
- FLUKA (CERN)
- Halo and tail generation (CERN)
- Common formats etc.

Study of machine induced background

- in particular: neutrons, muons and synchrotron radiation
- mitigaton strategies
 - e.g. tunnel fillers aginst muons

Study of beam-beam background and luminosity spectrum

CLIC - ILC R&D, LCUK Meeting / Birmingham

Support, Stabilization and Alignment

- LAPP, Oxford, CERN, FP7, BNL, SLAC, ...
 - others please join!
- Low-noise design
 - noise level measurements (DESY, CERN)
 - among others, measurements at LHC
 - 🗢 component design
- Mechanical design of quadrupole support
- Final quadrupole design
- Stabilisation feedback design
 - sensors
 - actuators
 - interferometers

D. Schulte

Experimental Area Integration

Common definitions

Infrastructure

- 🗢 work is quite generic
 - no large differences expected for CLIC detector w.r.t. ILC detector
- collaboration has started
- LHC expertise

Push-Pull

- option for both projects
- collaboration has started
- brings ILC/CLIC/LHC expertise

Crossing angle

- investigate requirements
- then study benefits to find a common crossing angle

Push-Pull Studies for Two Detectors

CLIC - ILC R&D, LCUK Meeting / Birmingham

Conclusions

- CLIC ILC collaboration on subjects with strong synergy
- Win-Win situation for both studies and for HEP in general
- Ambitious but realistic and practical approach
 - starting on limited number of projects
 - convenors to define plan of (limited) actions
- Most efficient use of limited resources
- Overlap in each others meetings
 - -> CLIC members -> ILC meetings, ILC members -> CLIC meetings
- Provide credibility to Linear Collider community
 - mutual understanding of status, issues, advantages of both technologies
 - responsible preparation of the future comparison of possible options for HEP with agreed pros and cons and criteria

Collaborative Competition and/or Competitive Collaboration

CLIC – ILC R&D, LCUK Meeting / Birmingham

Michael Hauschild – CERN, 18-Apr-2008, page 25

Velahaye @ Sendai,