Source Performance Modelling

S. Riemann, A. Schälicke, A. Ushakov

DESY, Germany

Final EUROTeV Scientific Workshop

Uppsala, Sweden

August 28, 2008

Outline

Introduction

- Layout of positron source
- Photon production
- Positron production

Positron transport

- Positron capturing
- Spin transport

Design issues

- Energy deposition
- Radiation damage
- Source activation

Outlook

Layout of Positron Source

ILC nominal positron source parameters

e ⁻ drive beam energy, GeV	150
\mathbf{e}^+ per bunch at the end of pre-accelerator	$3\cdot 10^{10}$
Bunches per pulse	2625
Pulse repetition rate, Hz	5
e ⁺ polarization	30 (60)

Photon Production

Undulator Parameters

Undulator K-value	0.92
Undulator period, cm	1.15
Number of photons, $\gamma/(e^-m)$	1.95
Energy of 1 st harmonic cutoff, MeV	10.06
Undulator-target distance, m	500

A. Ushakov (DESY)

Photon Collimator (modelled by Zang Lei, Daresbury Lab)

Photon Polarization and Transmission vs Collimator Radius

Model 1

- Ti-spoilers, Cu-absorber
- Length is 90 cm, outer radius is 6 cm

Model 2 (A. Mikhailichenko, EPAC'06)

Energy Deposition in Photon Collimator (calculated by Zang Lei)

			Mo	odel 1		Model 2	2
	Trans [%]	Deposited Energy			nergy [MeV/pr]		
	iiaiis. [70]	1 01. [70]	Ti	Cu	С	W	Cu
2	41	84	4.17 (34.7 %)	4.9	95 (<mark>41.1</mark>	%)
2		04	1.87	2.30	1.03	3.88	0.04
3	61	56	1.63	(13.6 %)	1.8	7 (15.6	%)
		50	0.78	0.85	0.48	1.37	0.02
4	74	1 33	0.61	(5.1%)	0.6	68 (<mark>5.7</mark>	%)
4 /4	00	0.31	0.30	0.21	0.45	0.01	

A. Ushakov (DESY)

Positron Production. e+ Source without Photon Collimation

Target Material	Ti6Al4V	W25Re
Positron Yield, e ⁺ / γ	0.022	0.033
Polarization, %	26.7	24.8

Positron transport. Positron Capturing. Optical Matching Device

Pulsed Flux Concentrator $B_0(z) = \frac{B_{ini}}{1+qz}$

Li Lens

$$B_{ heta}(r) = rac{\mu_0 l r}{2\pi a^2}$$

B-field along beam axis

B-field vs radius (I = 166 kA)

A. Ushakov (DESY)

Capture Efficiency and Positron Losses

FC: CE after 1st RF Structure $(B_{sol} = 0.5 \text{ T})$

Li-Lens: CE vs Lens Current ($B_{sol} = 0.5 \text{ T}$)

FC: Positron Losses

A. Ushakov (DESY)

Longitudinal and Transverse Cuts at 125 MeV. DR Acceptance

CE for different longitudinal cuts $(\varepsilon_{nx} + \varepsilon_{ny} < 0.09 \text{ m rad})$

DR Acceptance

- DR transverse acceptance: 0.09 m rad
- DR longitudinal acceptance: \pm 3.4 cm \times 25 MeV

Capture Efficiency

Longitudinal Cut	CE [%]
$\Delta z = 10 \text{ mm}$	39
$\Delta z = 34 \text{ mm}$	63

e⁺ Polarization

	Base Line	with Ph. Col.
	Design	<i>R_{col}</i> = 2.3 mm
after Target	26.7	44.2
after Pre-Accelerator*	38.6	48.4

* calculated using ASTRA code

Energy Deposition

Windows?

Max. Thermal Stress, MPa A. Ushakov (DESY)

Revolution Rate, rpm

Max. ΔT , K

3400

137

390

1920

63

90

Different Target Materials

$(K = 1, \lambda = 1 \text{ cm}; 0.4 X_0)$

Deposited Energy per Photon

Deposited Power per 1 cm

Radiation Damage (FLUKA & SPECTER)

Damage of Ti6Al4V target after 5k hours of irradiation:

 \sim 7 dpa (12.5% by neutrons) for stationary target

or ~ 0.05 dpa for rotating target with r = 50 cm

A. Ushakov (DESY)

Source Activation

Ambient Dose Rate Equivalent vs Decay Time

Nuclei	A	<i>T</i> _{1/2} , h	<i>.</i> D _{+1<i>h</i>} , mSv/h	%
Ti	45	3.1	104.4	42.09
Sc	46	2011.9	86.7	34.96
Sc	44	3.9	21.3	8.59
Sc	48	43.7	19.1	7.71
Sc	47	80.4	13.6	5.47

Effective Dose Rate [mSv/h]

A. Ushakov (DESY)

Dose Rates [pSv/s]. 1 Hour after 8 Hours of Irradiation (calculated by L. Fernandez-Hernando, Daresbury Lab)

Activation of Target

Dose Rate [mSv/h]

	Undulator Based	Conventional
after Source Switch-Off	280	700
after 1 hour	248	628
after 1 day	111	574
after 1 week	86	469

A. Ushakov (DESY)

- Positron production has been calculated for undulator-based and conventional positron sources
- Positron yield and polarization have been calculated for the different undulator parameters and target materials
- Positron capturing has been simulated for different schemes of OMD (pulsed flux concentrator and Li-lens)
- Spin transport through source has been simulated
- Energy deposition in source parts has been determined
- Radiation damage of target has been estimated
- Source activation has been calculated
- Report is coming soon