

ILC Main Linac Failure Modes

Dirk Krücker - DESY Uppsala, August 2008

Intro

- We have studied different failure modes for the ILC main linac
 - Beam loss in
 - 1. Study (2006)*: ML cavities
 - 2. Study (ongoing): BDS collimators and spoilers
 - Failure of
 - Klystrons (voltage and phase errors)
 - Quadrupoles, correctors, BPMs
 - Estimating the damage/particle densities

2006 Model

- A realistic model for an already commissioned, working linac with remaining alignment errors in the order of a few 100 µm.
- One-to-one steering
- 302 quadrupoles with corrector dipoles
- 302 klystrons each klystron feeds 24 cavities contained in 3 cryomodules

Misalignments

Quads:	σ _{x,y} = 300 μm
	$\sigma_{rot Z} = 300 \mu rad$
Cavities:	σ _{x,y} = 300 μm
	$\sigma_{rot Z} = 300 \mu rad$
Cryomods	: σ _{x,y} = 200 μm
	·/

We have considered

- Quad failures
- Klystron phase shifts

- Estimate
 - Quad failures modify the FODO β -function. We use a simple, multiple scattering ansatz to estimate the average offset

$$\langle \Delta x^2 \rangle = \sum_{i=1,n} (n-i)^2 L^2 \langle \Delta \Theta^2 \rangle > 35 \, mm$$

- At n = 18 this becomes
 larger than the cavity iris
- Simulation
 - No beam loss for a single quad failure
 - On average 7-8 randomly distributed quad failures are necessary to lose the beam (50% particles)

 $\Delta \theta = ka \approx 20 \,\mu \, rad$ quad strength $k \approx 0.06 \,m^{-1}$ quad offset $a \approx 400 \,\mu$

Number of Quads	% lost particles				
6	37				
8	73				
10	80				
12	95				

- A single failure may introduce strong betatron oscillation but only the combined effect of several failures is
- sufficient to reach the aperture.

Beam loss in ML - Klystron Phase Shifts

Spatial distribution of lost particles in the main linac for different klystron phases.

Beam loss in ML - Klystron Phase Shifts

- Common Klystron phase shift as an example
 - Gradient becomes smaller and thereby the energy along the linac $E(z) = E_0 + \frac{z}{2}(E_z E_0) \cos dz$
 - FODO stability criterion
 - will be violated at:

$$E(z) = E_0 + \frac{z}{L} (E_F - E_0) \cos \phi \\ |\frac{1}{2} Tr[M_{FODO}]| < 1$$

$$z (E_F - E_0) (1 - 2\cos\phi) = E_0 L$$

$$E_0 = 15 \text{GeV}, E_F = 250 \text{GeV}, L \text{ linac length}$$

- Particle density never exceeds 10%/mm²/cavity (100 random seeds)
- SC module with 9 cells, 2.10¹⁰ particles per bunch, 2625 bunches per train
- $10\% \times 2^{\cdot}10^{10} \times 2625 / 9 = 6^{\cdot}10^{11} / \text{mm}^2$
- typical particle density to generate a hole is 10¹³/mm² for Cu.

Failure Modes in ML+BDS

Dirk Krücker Isabell-Alissandra Melzer-Pellmann

A study of the impact of the following failure modes on the beam in the BDS:

- Problems with the klystron:
 - **Phase** error (changed from ϕ =3.8° up to 7.8°, nominal is 5.3°)
 - Voltage errors (changed to ± 1% klystron voltage error)
- Problems due to
 - failing quadrupoles

Simulation parameters

Simulation done with Merlin:

• Lattice: ILC2006c with different collimator settings taken from

A.I.Drozhdin, X.Yang ("ILC BDS Aperture Definition from the Collimation Point of View", May 15, 2006, to be found on the web: http://www-ap.fnal.gov/users/drozhdin/prdriver/pap_ILCFF9_aperture_short.pdf)

- Beam parameters:
 - ${\sigma_{\mathsf{x}}}^{\star}\approx 600~\text{nm}$
 - σ_y^* =5.1 nm
 - $\gamma \varepsilon_x = 8 \text{ mm·mrad}$
 - $\gamma \varepsilon_{v} = 0.02 \text{ mm·mrad}$
- Additional parameters:

10⁵ particles -> 50k per beam, 10 random seeds (misalignment configurations)

- Accelerator errors in Merlin:
 - Main Linac:
 - > Quadrupole transverse errors: 300 μ m x 300 μ m
 - \blacktriangleright Cavity transverse errors: 300 μm x 300 μm
 - BDS:
 - > Quadrupole transverse errors: 200 μ m x 200 μ m

1-2-1 steering

Layout of the last part of the BDS

D. Krücker, I.-A. Melzer-Pellmann EUROTEV Scientific Workshop, Uppsala 2008

Particles in BDS

Failure limit for spoilers

From TESLA-Note 01-12:

For beam with σ_x =130/M μ m, σ_x =7/M μ m (similar values for ILC beam

at spoilers SP2, SP4 and SPEX):

Ultimate Tensile Strength (UTS) limit reached for nominal (M=1) beam with the 2nd bunch.

D. Krücker, I.-A. Melzer-Pellmann EUROTEV Scientific Workshop, Uppsala 2008

Klystron failure: bandwidth for phase errors

D. Krücker, I.-A. Melzer-Pellmann EUROTEV Scientific Workshop, Uppsala 2008

Klystron failure: bandwidth for voltage errors

Same voltage fluctuation factor for all klystrons.

Similar to phase error: beam spoiled by SPEX, then absorbed in the following absorbers. Beam size @ SPEX: $\sigma_x = 120 \ \mu m, \sigma_y = 10 \ \mu m$

Safe for one bunch!

Voltage needs to be stable to $\pm 0.1\%$

Quadrupole failure in Main Linac

- Characteristic time constant for SC quadrupole to ramp down to 0 is O(ms).
- Bunch interval within pulse: 369.2 ns
- 2 scenarios:
- Quadrupole failure during the time between pulses -> damping ring extraction inhibited.
- Quadrupole failure during pulse -> next bunch will only see small change of field (O(0.04%)) due to long ramp down time

Examples for mean y distribution in case of quad failure (0.04% less than nominal field).

Quadrupole failure in Main Linac

(field completely 0)

Dependent on the misalignment geometry of the quadrupoles and cavities: beam might get completely lost at positions where beam size is small enough to cause damage: Example:

Beam lost in SP1 with:

 $σ_x$ = 16 μm, $σ_y$ = 13 μm

 Damping ring extraction inhibit must be active

Conclusions

- Failure leading to different beam energy causes beam to end up mainly in SPEX (safe for one bunch)
- Quadrupole errors:
 - complete failure: beam needs to be kept in damping ring to prevent damage
 - failure during pulse: slow field change does not affect the beam significantly

To do:

Corrector failure

Failure mode studies will be finished in few weeks.

-> EUROTeV-Report will summarize final results.

Backup transparencies

Backup: collimator settings calculated by Drozhdin

name	thickness material		aperture					σ beam size		
				code	hor.	ver.	hor.	ver.	hor.	ver.
	mm	rad.len.			mm	mm	σ_x	σ_y	mm	mm
collim.at $8\sigma_x X 57\sigma_y$										
AB2	429.0	30	Copper	17	2.0	2.0	18	260	0.1119	0.0077
SP2	8.6	0.6	Copper	18	0.9	0.5	8	65	0.1119	0.0077
PC1	214.5	15	Copper	20	3.0	3.0	-	-	0.0655	0.0016
AB3	429.0	30	Copper	28	2.0	2.0	99	1670	0.0202	0.0012
PC2	214.5	15	Copper	10	3.0	3.0	-	-	0.0617	0.0015
PC3	214.5	15	Copper	22	3.0	3.0	-	-	0.1419	0.0055
AB4	429.0	30	Copper	24	2.0	2.0	18	260	0.1123	0.0077
SP4	8.6	0.6	Copper	25	0.7	0.5	6.2	65	0.1123	0.0077
PC4	214.5	15	Copper	23	3.0	3.0	-	-	0.1373	0.0061
PC5	214.5	15	Copper	11	3.0	3.0	-	-	0.0923	0.0030
AB5	429.0	30	Copper	12	2.0	2.0	47	2200	0.0426	0.0009
PC6	214.5	15	Copper	27	3.0	3.0	-	-	0.0893	0.0023
PDUMP	214.5	15	Copper	56	2.0	2.0	29	328	0.0677	0.0061
PC7	214.5	15	Copper	55	60.0	5.0	1700	289	0.0349	0.0173
SPEX	35.6	1	Titanium	33	1.0	0.8	19	62	0.0516	0.0130
PC8	214.5	15	Copper	19	3.0	3.0	-	-	0.0367	0.0170
PC9	214.5	15	Copper	26	3.0	3.0	-	-	0.0378	0.0123
PC10	214.5	15	Copper	13	3.0	3.0	-	-	0.0606	0.0073
ABE	105.0	30	Tungsten	37	2.0	2.0	22	833	0.0902	0.0024
PC11	214.5	15	Copper	14	3.0	3.0	-	-	0.0400	0.0011
AB10	105.0	30	Tungsten	39	7.0	7.0	18	139	0.3801	0.0502
AB9	105.0	30	Tungsten	40	10	4.5	16	147	0.6449	0.0307
AB7	105.0	30	Tungsten	41	4.4	1.6	171	1230	0.0257	0.0013
MSK1	105.0	30	Tungsten	42	7.8	4.0	16	178	0.4875	0.0225
MSK2	105.0	30	Tungsten	43	7.4	4.5	12	151	0.6076	0.0298

Table 1: ILC collimator aperture, length and material. SP - spoiler, AB - absorber, MSK - photon mask, PC - protection collimator (mask). Version ILCFF9 with enlarged aperture of SPEX to $1 \times 0.8 \text{ }mm^2$, PCs to $3 \times 3 \text{ }mm^2$ and aperture of absorbers to $2 \times 2 \text{ }mm^2$. Aperture of PC7 is $60 \times 5 \text{ }mm^2$, ABE, AB10, SB9 and AB7 are as in the Table for "tight" collimation. There is a way for collimation with SPEX at X=1 mm. To do this, it is necessary to decrease aperture of SP4 from $0.9 \times 0.5 \text{ }mm^2$ to $0.7 \times 0.5 \text{ }mm^2$. Fig. 2 shows all halo particles and particles passed behind the collimation requirement window. Fig. 3 presents these particles at the SP2, SP4, SPEX and FD entrance. As it is seen from this figures, there is a way to reduce beam size at FD by moving SP4 close to the beam.