Low Emittance Tuning Working Group Summary

David Rubin

Cornell Laboratory for

Accelerator-Based Sciences and Education

LET Working Group

- Optics correction
 - Measurements
 - Analysis
 - Experience
- Instrumentation
 - Beam size monitor
 - Characterization
 - Beam position monitors
- Lattice characterization
 - NSLSII
 - ILC baseline design

Measurements

- Closed orbits -> ORM analysis
- Resonance excitation of normal modes and measurement of
 - Phase/amplitude data
 - Turn by turn data

July 8, 2008 ILCDR08

- Analysis of closed orbit data
 - ORM Fit everything at once?
 - Large data set (>100 closed orbit differences)
 - ATF, Australian synchrotron, light sources
 - Fit measured to modeled response matrix

Software provides for flexibility to include parameters as you like (quad, skew quad k, steering strengths, BPM tilts and gains, quad tilts, ...)

• Or with smaller data set (~12 orbits) (KEKB)

Correct coupling - remeasure and

Correct Dispersion - remeasure

Correct Beta-function

- Analysis of phase/amplitude or turn by turn data
 - Fit measured betatron phase to model using quad/skew k (CESR)
 - Fit dispersion to phase/amplitude data
 - Model independent analysis of turn by turn data (PEPII)

Experience

- KEKB (limited closed orbit data ORM)
 - Correct coupling with vertical orbit bumps in sextupoles (and skew quads)
 - Residual dispersion <10mm horizontal and <8mm vertical
 - Correct with antisymmetric bumps in sextupoles
 - $\Delta\beta/\beta \sim 6\%$
 - Relatively few quad correctors?

Each iteration ~5minutes, Convergence in 30-60 minutes

- Australian synchrotron (extensive closed orbit data ORM)
 - Collect orbit data in 10-15 minutes? (> 100 orbits)
 - Correct optics, coupling, BPM calibration (tilt and gain)
 - <0.07% emittance coupling
 - Vertical emittance ~6pm? (limited by resolution of beam size monitor)

Experience

- -ATF (extensive closed orbit data ORM)
 - •2-3 hours to collect data
 - •Consecutive (same day) measurement, correction and measurement

Show good consistency in BPM tilts, skew quad correction,

Measurements done a few weeks apart are not so consistent

Model to be extended to include closed orbit errors (and/or) orbit to be

carefully corrected in advance of measurements

<5pm 2004

CESR (amplitude/phase measurement)

Collect data, analyze and implement corrections in a few minutes (allows easy iteration)

- $\Delta\beta/\beta$ <1% (correct beta error with all 100 quadrupoles)
- < 0.05% emittance coupling (correct coupling error with 14 skew quads)

Compliment phase amplitude data with closed orbit data (under development)

ORM analysis to characterize BPM (after phase/coupling correction)

Include phase, dispersion data in ORM analysis

PEPII

Correction of beta beat permits approach to half integer

BPM characterization

BPM characterization

- ATF
 - High resolution BPM's (echotek) ->
 Sub micron resolution (30nm)

 30 micron offsets
- KEKB
 - Offsets 75-250 microns
 - Gain mapping to measure relative gains of BPM electrodes
- CESR
 - ORM analysis indicates BPM tilts ~30mrad (very preliminary)

Instrumentation

- Beam size measurement
 - ATF Xray beam size monitor
 - High spatial resolution especially for 1pm vertical emittance
 - Non-destructive measurement
 - 2-dimensional (x,y) beam profiling
 - Real time beam profile measurement (<1ms)
 - <1 µm has been achieved
 - CesrTA Xray beam size monitor (under development)
 - Fast emittance determination (bunch by bunch/turn by turn) 4ns
 Based on photo diode detector
 - 2-3 µm resolution (goal)

July 8, 2008 ILCDR08

Observations

- Big rings and small rings
 - KEKB (3km circumference)
 - Optics correction based on "small" data set (18 orbits)
 - Sequential correction of coupling, then dispersion, then beta
 - Australian synchrotron (216 m)
 - Optics correction based on "large" data set (100 orbits)
 - Correct beta- coupling in one step, fit BPM tilts,gains with ORM
 - CESR (768m)
 - Optics correction based on phase/coupling data
 - Correct beta-coupling in one step
 - Then measure and correct dispersion
 - Then ORM analysis of large data set for BPM characterization Iterate?

July 8, 2008 ILCDR08

Observations

- Alignment
 - Alignment and stability of that alignment is crucial
 - Australian synchrotron, SLS, LBNL have all achieved
 <10pm emittance with survey alignment <50 microns
 (and ORM correction schemes)
- BPM resolution and stability is essential
 - (ATF experience with echotek electronics)
- Fast turn around for measurement and correction of optical errors is essential
- ? How many BPM's and correctors are required
 - Study of ILC baseline lattice quantifies relationship between emittance that can be achieved vs number of BPM's
 - Extend the study to correctors?
 - Experience from existing machines is varied