

Experimental Study on Clearing Electrode at KEKB Positron Ring

Y. Suetsugu and H. Fukuma, KEK

M. Pivi and W. Lanfa, SLAC

Introduction
 Experimental Setup

 Electrode
 Electron Monitor
 Test Chamber

 Results

 In Field-Free Region

- 2. In Magnet
- 4. Problems
- 5. Summary

I LCDR08 2008.07.08-11 Cornell Univ.

2008/7/10

Page 1

Introduction

- Clearing Electrode = A possible solution to
 - suppress electron cloud in magnets.
 - Drift space :Solenoid is available.
 - Drastic reduction in EC was indicated by simulations.
- Experimental study on a clearing electrode using KEKB positron ring is planned, as a chain of ILC DR R&D study.
- Goal
 - Developing a clearing electrode with low beam impedance, and available for high current machine.
 - Demonstrate the effect of electrode on electron cloud formation.

Introduction

- New strip type electrode was developed.
- Very thin electrode and insulator;
 - Electrode: ~0.1 mm, Tungsten, by thermal spray.
 - Insulator: ~ 0.2 mm, Al_2O_3 , by thermal spray.

I LCDR08 2008.07.08-11 Cornell Univ.

•

RF properties (calculation by MAFIA)

– Thin electrode and insulator \rightarrow Low beam impedance

Heating (simulation by ANSYS) – Expected T for 100 W input

 Assembly to the chamber and connection part - The chamber can be baked up to 140 °C.

N-type co-axial connector (~ 50Ω)

34 mm 2.3 mm Copper Metal

Connection to feed-through

Metal-coated AI_2O_3 screw

bridge

screw

Page 7

I LCDR08 2008.07.08-11 Cornell Univ.

Notes

 Similar structure to "Invisible Electrode" by F. Caspers (PAC07). Difference: Electrode is made of pure metal (W). • We used pure metal: (1) To avoid Joule loss of the electrode due to high current (2) To reduce voltage drop along the long electrode.

Page 8

I LCDR08 2008.07.08-11 Cornell Univ.

Power Supply for Electrode Power supply LPF NH-5D-2E $f_{c} = 300 \text{MHz}$ 100m (Equivalent in AC) Electrode 50 Ω Tunnel 2.1 μF 37.5 Ω Input impedance Abs(Z) ohm 100 80 Inside 80 60 Power supply 40 HV1.5-0.3, Takasago 20 20 $V_{\rm max} = 1.5 \text{ kV},$ 104 $I_{\text{max}} = 30 \text{ mA}$ 100 freq. (Hz) 100 10² 104 106 Page 9 2008/7/10 I LCDR08 2008.07.08-11 Cornell Univ.

Electron Monitor

7 strip-type collectors measure the horizontal spatial distribution of electrons.

Monitor part

Output feed-through

Collector (7 strips)

I LCDR08 2008.07.08-11 Cornell Univ.

Electron Monitor Repeller (Retarding grid) Assembly of electrode 46 **Collectors** - Four layers 41 2.5 2.5 – With RFA Shield **Monitor** 45 Holes 46 54 Monitor holes (ϕ 2 mm, 3mm pitch) Applied voltage Collectors: +100V Retarding Grid: 0 ~ -1 kV • Measurement: DC mode

Page 11

I LCDR08 2008.07.08-11 Cornell Univ.

Test chamber

Electrode and monitor are set face to face
 Electrode and monitor are detachable.

Experimental Setup

- Test chamber was installed into KEKB Positron ring (Low Energy Ring).
 - 3.5 GeV positron
 - $-\sigma_z = 6 \sim 7 \text{ mm}$
 - Beam current $(I_b) \sim 1600 \text{ mA}$
 - Bunch spacing (B_s) 4 ~16 ns
- Wiggler magnet.
 - Magnetic field: 0.75 T
 - Effective length: 346 mm
 - Aperture (height): 110 mm

Results in Field-Free Region

- At first, installed in field-free region
 - 1585 bunches ($B_s \sim 6 \text{ ns}$), $I_b = 1600-1620 \text{ mA}$ - V_r (repeller voltage) = -1 kV
 - V_{elec} (electrode voltage) = +500V ~ -500V

Results in Field-Free Region

Spatial distribution during beam injection

Results in Magnetic Field 1585 bunches • Effect of electrode voltage (V_{elec}) (*B*_s ~ 6 ns) ~1600 mA $V_{\rm r} = 0 \rm V$ $V_r = 0 V$ (Log) (Linear) 500 -500 450 450 400 -400 350 -350 (-) 300 -300 250-250 200-200 150 -150 -100 -50 -50 L Clec (V) 1% 50 100 1 x 10⁻⁵ 4 x 10⁻⁶ 100 150 150 1 x 10⁻⁶ 200 3 x 10⁻⁶ 200 $4 1 \times 10^{-7}$ $\sum_{0}^{3 \times 10^{-6}} 2 \times 10^{-6}$ 250 250 300 300 350 350 1 x 10⁻⁸ 400 400 1 x 10⁻⁶ +) 450 450 1 x 10⁻⁹ 500 500 0 3 4 5 2 6 Collectors Collectors Page 17 I LCDR08 2008.07.08-11 Cornell Univ. 2008/7/10

• Effect of electrode voltage (V_{elec})

1585 bunches (*B*_s ~ 6 ns) ~1600 mA

Energy Distribution

 High energy electrons are around the center (beam orbit)

1585 bunches

Page 23

I LCDR08 2008.07.08-11 Cornell Univ.

Fill patterns

Problems

- Decrease in insulation resistivity
 - Decreased from 2 M Ω down to several 10 k Ω

Problems

Possible reasons of the decrease in resistivity

 Sputtering of aluminum (chamber)?
 Discharge at connection part?
 Original color

Inside check when moved into inside magnet

I LCDR08 2008.07.08-11 Cornell Univ.

Problems

Heating of feed-through

 Cooled by air and water
 Mismatching of impedance?

 Vacuum leak at flange

 Insufficient fastening?

- No problem for
 - Temperature of electrode (test chamber)
 - Power supply

Page 29

I LCDR08 2008.07.08-11 Cornell Univ.

Mysteries at present

- Complicated behavior of I_e at negative V_{elec} , especially for high $|V_r|$.
 - Not seen in field-free region \rightarrow effect of magnetic field
 - Electrons can move only along magnetic filed lines.
 - Effect of monitor (holes, repeller grid)?
- Saturation of $I_{\rm e}$ at high positive $V_{\rm elec}$.
 - Background of monitor (SR?) ?
 - But sometimes $I_{\rm e}$ goes down further?
- Spatial distributions for different bunch fill patterns
 - Simulation indicated two peaks for all patterns.
 - Poor resolution of monitor?

Page 30

Mysteries at present

Summary

- A clearing electrode structure with thin electrode and insulator was developed.
 - The thin structure reduced the beam impedance and enhance the thermal conductivity, which make the electrode available in a high-intensity positron machine.
- Clear effect of clearing electrode on the reduction of EC was experimentally demonstrated, both in field-free region and in magnet (0.75 T).
- Some mysteries, such as decrease in resistivity, complicated behavior of measured electron current at negative electrode voltage, remains at present.
 - Further investigation and simulation to understand the mysteries are required.
- Improvement of the electrode structure, to avoid discharges, and the electron monitor is planned.
- How to apply it to real machines to be considered.

Backup

I LCDR08 2008.07.08-11 Cornell Univ.

Next version

•

Improvement of connector – Suggested by Billing-san

I LCDR08 2008.07.08-11 Cornell Univ.

Trajectories of electrons

 Field-Free Region
 1/1585/3 (Bs ~ 6 ns)

I LCDR08 2008.07.08-11 Cornell Univ.

Field-Free Region

- 1/1585/3 (Bs ~ 6 ns), $V_r = -1$ kV

Page 37

I LCDR08 2008.07.08-11 Cornell Univ.

- Spatial distribution of Measured Electron Current (I_e) - $V_r = 0$ kV, 4/200/3 (Bs = 6 ns)
 - -B=0.75 T

Measurement

Simulation ($\delta_{max} = 1.2$)

