A Resistive Clearing Electrode at CesrTA

Bob Zwaska

CesrTA Kickoff

July 10, 2008

Resistive Electrode Concept

- Originates with Fritz Caspers
 - > Evolution of the clearing electrode
- Very thin electrode on one or two sides minimizes the volume consumed
 - ➤ One electrode has good clearing ability in simulation
- Thin electrode can also be resistive
 - > Reduces concerns about impedance

Enamel

- Vitreous glass enamel as a substrate
 - > Applied by Düker Gmbh.
- Strong, thin, insulating layer in contact with vacuum vessel
- Electrodes deposited on top of electrodes

Clearing Electrode at Fermilab

- With Fritz's help, we started looking at electrodes at Fermilab for EC mitigation
- We have two enameled MI beam pipes from Düker
 - ➤ Single enamel stripe and entire surface
- However, we know that the electrode is not a good solution for the Main Injector (Project X, Proton Driver, etc.)
 - ➤ Beam pipe is not generally replaceable
- Still approached enamel as R&D
 - ➤ More appropriate for new machines, and testing in CesrTA

Change to CesrTA

- Resistive electrode is a good potential solution for ILC DR
 - ➤ Also, other new machines (PS2, etc.)
- Plans still just concepts for now
 - > Turns out, we need significant modifications for electron machines
 - ➤ Need more care for shorter bunch lengths
 - > Stainless body not great for synchrotron radiation
- Can be in straight and/or arc to get exposure to photoelectrons

Plans for CesrTA

- Deposit electrode and dress chamber for CESR operation
 - ➤ Shape electrode for image currents (should be small...)
 - > Shielded lead wire for applying bias
 - > RFA for ECloud measurement
 - ➤ Replace Stainless with water-cooled Cu on SR stripe
- Look to install in arc in winter or spring down
- Maybe plan to move to straight later on
 - ➤ Back to Fermilab eventually

Goals for CesrTA

- Operate the resistive electrode in electron machine
 - Ensure that nothing breaks
- Test for suppression of ECloud
 - > See if it works
- Look for impedance effects
 - > See if it breaks something else

• Learn from unexpected results

Other Concerns

- Survivability of enamel coating
 - > Synchrotron radiation can burn up enamel
 - ➤ Also worry about hadronic radiation separate test at Fermilab
- Survivability of electrode
 - ➤ If there are image currents, they may cause heating
- UHV properties of enamel & electrode

Summary

- Have a new home for our enameled chamber
 - CesrTA looks to be a better fit
- Will be able to test the clearing electrode for positrons and electrons at low and high SR
- Should be able to move it back to Fermilab and test with protons
- Plans are still being made input is welcome

A Resistive Clearing Electrode at CesrTA

Bob Zwaska

CesrTA Kickoff

July 10, 2008