CesrTA Electron Cloud Mitigation Plans

Mark Palmer Cornell Laboratory for Accelerator-Based Sciences and Education

Outline

- Experimental Regions
 - Plans for L0
 - Wiggler Chambers
 - Other Chambers
 - Plans for L3
 - PEP-II Chicane
 - Test Region
 - Plans for the Arcs
 - CESR Chambers
 - Test Regions
 - SEY Studies
 - PEP-II hardware and SLAC/FNAL/CU collaboration
- Conclusion

CESR Reconfiguration

NORTH IR

L3 Straight

- Instrument large bore quadrupoles and adjacent drifts
- Install of PEP-II experimental hardware (including chicane) in early 2009
- Provide location for installation of test chambers

Arcs where wigglers removed

- Instrument dipoles and adjacent drifts
- Provide locations for installation of test chambers

L0 Straight

- All wigglers in zero dispersion regions for low emittance
- Instrumented wiggler straight and adjacent sections

3841206-001

L0 Features

Chambers

- Wiggler test location at downstream end (west end) of straight for e⁺ beam
- Instrumented chambers throughout region
 - RFAs
 - Vacuum monitoring, RGA
 - Spare buttons for TE wave transmission experiments
- Initially: Q02W, Q01W, Q00W are TiN coated and instrumented
- Pressure bump capability
- Targeting a series of wiggler VC mitigation tests

Chambers with Thin RFAs

Planned Chambers

- 1. Control diagnostics only
- 2. TiN Coated
- 3. Clearing Electrode
- 4. Grooves?
- 5. Other
- 4 untouched extrusions remain available

Wiggler Chambers

Just back from E-Beam Welding

Mitigation Techniques

- Wiggler extrusion split into top/bottom halves ⇒ provides exposed vacuum chamber surface for modifications
 - Possibility of adding grooved surface

 Tungsten Electrode (hot spray) on alumina – see talk by Suetsugu

Propose to pursue this option next

For feed-through >> Looking at options for low impact feedthroughs

L3 Now

L3 Capabilities

- By mid-2009:
 - PEP-II Chicane with single slot for swapping in test chambers
 - Will complete and test grooved chamber which could not be tested in PEP-II
 - Drift region test chamber slot(s)
 - Available for collaborator and local use
 - Provides relatively low direct synchrotron radiation load
 - ~0.025 photons/beam particle/meter @2GeV
 - ~0.065 photons/beam particle/meter @5.3GeV
 - Present bi-directional synchrotron light mirror at L3 center to be replaced by 2 retractable mirrors at either end of section (just inside Q48s)
 - Retractable mirrors will allow controlled masking of synchrotron radiation stripe for either beam
 - Ready for deployment of large bore quadrupole test chambers

CESR Arcs

- Remove wigglers
- Install local gate valves and spool pieces initially
- Two locations:
 - 15W
 - 15E
- Flexible VC test locations which see CESR dipole radiation

~0.5 γ /particle/m

@ 2 GeV

~1.2 γ/particle/m

@ 5 GeV

SEY Studies

- Plan to re-deploy SLAC SEY hardware as part of SLAC-FNAL-CU collaboration
 - Deploy initially at CESR
 - Then re-deploy at FNAL
- Will provide the ability to cross-check performance of vacuum chamber surfaces with direct SEY measurement
- Long-term will provide an opportunity to check response of surfaces to processing by both synchrotron radiation and particles

SEY Test Station

SEY TESTS at PEP-II

Expose samples to PEP-II LER synchrotron radiation and electron conditioning. Then, measure Secondary Electron Yield (SEY) in laboratory. Samples transferred under vacuum.

Complementary to CERN and KEK studies

Conclusion

- First deployment of CESR hardware for EC mitigation studies beginning now
- Dedicated experimental regions to appear over the course of the next half year
 - Ability to efficiently install test chambers
 - Support for collaborators
- A high priority is to lay out a detailed plan of mitigation tests that need to be undertaken as part of CesrTA
 - Need lead time to prepare chambers
 - Need to ensure that we focus on the most critical tests