
Experimental Plan for Achieving Low Emittance in CesrTA

David Rubin

Cornell Laboratory for

Accelerator-Based Sciences and Education

Outline

- CesrTA lattice
 - Horizontal emittance in a wiggler dominated ring
- Sensitivity of vertical emittance to optical and alignment errors
 - Contribution to vertical emittance from dispersion and coupling
 - Alignment and survey
- Beam based alignment
 - Dependence on BPM resolution
 - Beam position monitor upgrade
- Survey
 - Network of reference monuments
 - Digital level, laser tracker, quad moving hardware
 - Analysis of zero corrector orbits
- Dispersion measurement
 - AC method
 - Correction
- Coupling measurement
 - Phase/coupling measurement and ORM
- Beam size monitor
- Lifetime as a measure of beam size
- Schedule
- Status

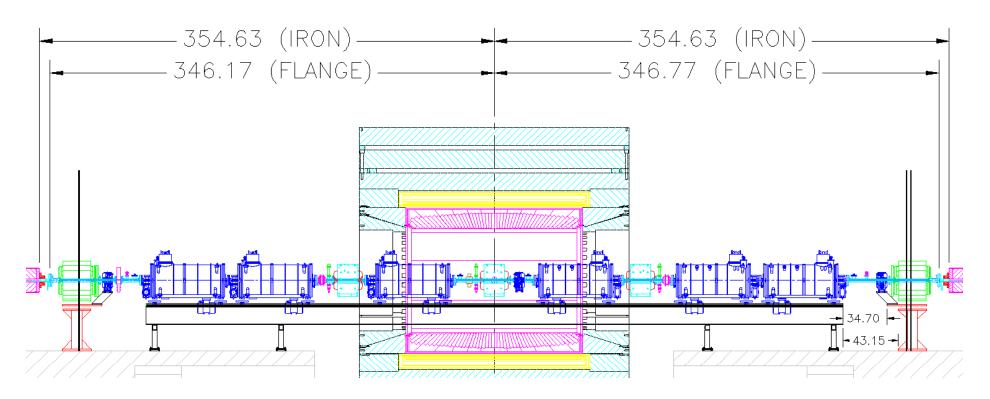


Low Emittance Optics

Plot file: BZ:BETA_ORBIT.PCM Lat file: /a/lnx113/nfs/acc/user/dlr/bmad/lat/des/CearTF/ctf_20080319/ctf_20080319.lat Lattice: GTF_20080319


Parameter	Value
Е	2.0 GeV
$N_{ m wiggler}$	12
B_{max} (wigglers)	1.9 T
ε_{x} (geometric)	2.3 nm
$\varepsilon_{\rm v}$ (geometric) Target	20 pm
$ au_{ ext{x,y}}$	56 ms
$\sigma_{\rm E}^{\rm S}/{\rm E}$	8.1 x 10 ⁻⁴
Q_z	0.070
Total RF Voltage	7.6 MV
$\sigma_{\rm z}$	8.9 mm
$\alpha_{\rm p}$	6.2×10^{-3}
•	

Wiggler dominated: 90% of synchrotron radiated power in wigglers



Low Emittance Optics

L0 Wiggler Region

MAIN COMPONENT POSITIONS

- L0 wiggler experimental region design work well underway
 - Installation during July down
 - Heavily instrumented throughout with vacuum diagnostics

- Note: Part of CLEO will remain in place
 - At present unable to remove full detector
 - Time savings

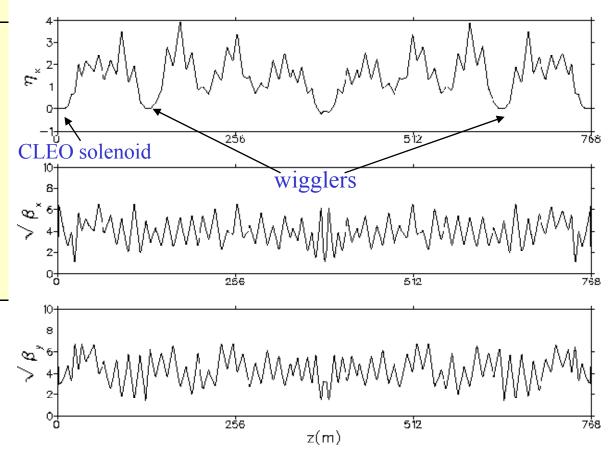
July 8, 2008 ILCDR08

Minimum horizontal emittance

Can we achieve the theoretical horizontal emittance? How does it depend on optical errors/ alignment errors?

Correct focusing errors - using well developed beam based method

- 1. Measure betatron phase and coupling
- 2. Fit to the data with each quad k a degree of freedom
 - Quad power supplies are all independent. Each one can be adjusted so that measured phase matches design
- 3. On iteration, residual rms phase error corresponds to 0.04% rms quad error.
 - → residual dispersion in wigglers is much less than internally generated dispersion
- We find that contribution to horizontal emittance due to optical errors is neglible.
- Furthermore we determine by direct calculation that the effect of of misalignment errors on horizontal dispersion (and emittance) is negligible We expect to achieve the design horizontal emittance (~2.3nm)


6 wiggler optics

June 2008 machine studies

Parameter	Value
Е	2.0 GeV
$N_{wiggler}$	6
B_{max} (wigglers)	1.9 T
ε_{x} (geometric)	7.5 nm
$\tau_{\mathrm{x,y}}$	100 ms
$\sigma_{\rm E}^{\rm S}/{\rm E}$	7.8×10^{-4}
Q_{z}	0.089
Total RF Voltage	6.8 MV
$\sigma_{\rm z}$	9.0 mm
α_{p}	1.1×10^{-2}

Wiggler dominated: 80% of synchrotron radiated power in wigglers

Plot file: BZ;BETA_ORBIT.PCM Lat file: /a/ln<113/nfs/acc/user/dlr/bmad/lat/des/CesrTF/6wig/2085/min_emit/bmad_6wig_Bnm_2085.lat Lattice: 6WIG_8NM_2085

Sources of vertical emittance

• Contribution to vertical emittance from dispersion

$$\varepsilon_{y} = 2J_{\varepsilon} \frac{\langle \eta_{y}^{2} \rangle}{\langle \beta_{y} \rangle} \sigma_{\delta}^{2}$$

Dispersion is generated from misaligned magnets

- Displaced quadrupoles (introduce vertical kicks)
- Vertical offsets in sextupoles (couples horizontal dispersion to vertical)
- Tilted quadrupoles (couples η_x to η_y)
- Tilted bends (generating vertical kicks)
- Contribution to vertical emittance from coupling
 Horizontal emittance can be coupled directly to vertical

through tilted quadrupoles

$$\varepsilon_{y} = \langle \overline{C}_{21}^{2} + \overline{C}_{22}^{2} \rangle \varepsilon_{x}$$

Sensitivities and beam based alignment

Simulation

1. Model ring

- Magnet misalignments
- Magnet field errors
- Beam position monitor offsets and tilts
- BPM resolution [absolute & differential]

2. "Measure"

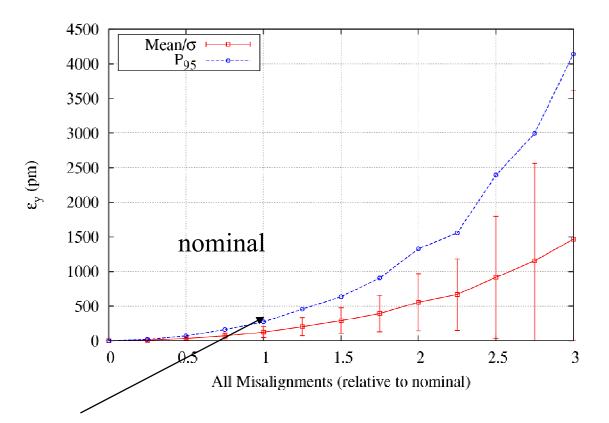
- Orbit
- Dispersion
- Betatron phase
- Transverse coupling

3. Fit - (using dipole and skew quad correctors)

- Fit "measured" betatron phase to ideal model using ring quadrupoles
- Fit "measured" orbit to ideal model using dipole correctors
- Fit "measured" dispersion to ideal model using dipole correctors
- Fit "measured" transverse coupling to ideal model using skew correctors

(Thanks to Rich Helms)

Misalignments


For CesrTA optics:

Use gaussian distribution of alignment errors to create "N" machine models and compute emittance of each

Element type	Alignment parameter	Nominal value
quadrupole	vert. offset	150µm
sextupole	vert. offset	300µm
bend	roll	100µrad
wiggler	vert. offset	150µm
quadrupole	roll	100µrad
wiggler	roll	100µrad
sextuple	roll	100µrad
quadrupole	horiz. offset	150µm
sextupole	horiz. offset	300µm
wiggler	horiz. offset	150µm

Dependence of vertical emittance on misalignments

Element type	Alignment parameter	Nomina l value
quadrupole	vert. offset	150µm
sextupole	vert. offset	300µm
bend	roll	100µrad
wiggler	vert. offset	150µm
quadrupole	roll	100µrad
wiggler	roll	100µrad
sextuple	roll	100µrad
quadrupole	horiz. offset	150µm
sextupole	horiz. offset	300µm
wiggler	horiz. offset	150µm

For nominal misalignment of all elements, $\varepsilon_{\rm v}$ < 270pm for 95% of seeds

Misalignment tolerance

Contribution to vertical emittance at nominal misalignment for various elements

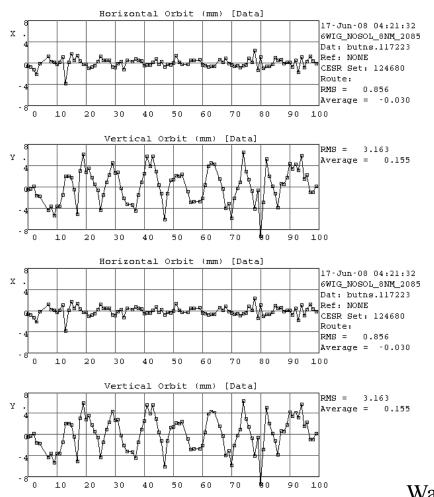
Element type	Alignment parameter	Nominal value	Vertical emittance
quadrupole	vert. offset	150μm	114pm
sextupole	vert. offset	300μm	8.3pm
bend	roll	100μrad	2.3pm
wiggler	vert. offset	150µm	1.4pm
quadrupole	roll	100μrad	1pm
wiggler	roll	100μrad	<< 0.01pm
sextuple quadrupole	roll horiz. offset	100μrad 150μm	
sextupole wiggler	horiz. offset horiz. offset	300μm 150μm	

Target emittance is < 20 pm

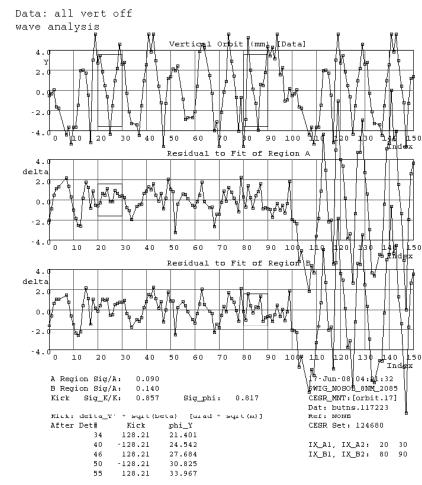
July 8, 2008 ILCDR08 12

Estimate of quadrupole misalignment

We can estimate vertical misalignment of quads by measuring vertical orbit with no vertical correctors.


The variance of the closed orbit displacements (y_{co}) is related to the variance in quadrupole offsets ΔY_{quad} according to

$$< y_{co}^2 > = < \beta_y > \sum \beta_y (K_1 1)^2 < \Delta Y_{quad}^2 > /(8 \sin^2 \pi v_y)$$


$$\rightarrow$$
 $<$ y $^2_{co}$ > $^{1/2}$ $\sim 8 < \Delta Y^2_{quad}$ > $^{1/2}$

Zero corrector orbit

Data: all vert off

All vertical correctors zero

Wave analysis indicates misalignment in IR as source Residual in arc ~1.2mm \Rightarrow $<\Delta y^2_{quad}>^{1/2}$ ~ 150µm

Beam Based Alignment

- Beam base alignment algorithms and tuning strategies (simulation results)
 - Beam based alignment of BPMs (depends on independent quad power supplies)
 - $\Delta Y < 50 \mu m$
 - Measure and correct
 - β -phase \rightarrow design horizontal emittance
 - Orbit \rightarrow reduce displacement in quadrupoles (source of vertical dispersion)
 - Vertical dispersion → minimize vertical dispersion
 - Transverse coupling → minimize coupling of horizontal to vertical emittance
 - Minimize β -phase error with quadrupoles
 - Minimize orbit error with vertical steering correctors
 - Minimize vertical dispersion with vertical steering correctors
 - Minimize coupling with skew quads

July 8, 2008 ILCDR08

One parameter correction

- CESR correctors and beam position monitors
 - BPM adjacent to every quadrupole (100 of each)
 - Vertical steering adjacent to all of the vertically focusing quadrupoles
 - 14 skew quads mostly near "interaction region" (L0)
- The single parameter is the ratio of the weights
- Three steps (weight ratio optimized for minimum emittance at each step)
 - Measure and correct vertical orbit with vertical steerings minimize $\Sigma_i \left(w_{c1} [kick_i]^2 + w_o [\Delta y_i]^2 \right)$
 - Measure and correct vertical dispersion with vertical steering minimize $\Sigma_i \left(w_{c2} [kick_i]^2 + w_n [\Delta \eta_i]^2 \right)$
 - Measure and correct coupling with skew quads minimize $\Sigma_i (w_{sq}[k_i]^2 + w_c[C_i]^2)$

July 8, 2008 ILCDR08

Tuning vertical emittance

Evaluate 6 cases

2 sets of misalignments:

1. Nominal and 2. Twice nominal (Worse)

X 3 sets of BPM resolutions:

1. No resolution error, 2. Nominal, and 3. Worse (5-10 X nominal)

	Parameter	Nominal	Worse	
Element	Quad/Bend/Wiggler Offset [µm]	150	300	
Misalignment				$\sigma_{v}=109\mu m$
	Sextupole Offset [µm]	300	600	May 07 survey
	Rotation (all elements)[µrad]	100	200	
	Quad Focusing[%]	0.04	0.04	$\sigma(one\ turn) \sim 10 \mu m$
BPM Errors	Absolute (orbit error) [µm]	10	100	$\sigma(N_{turn} \text{ average}) \sim 10 \mu\text{m/VN}$
	Relative (dispersion error*)[μm]	2	10	
	Rotation[mrad]	1	10	

^{*}The actual error in the dispersion measurement is equal to the differential resolution divided by the assumed energy adjustment of 0.001

Low emittance tuning

Vertical emittance (pm) after one parameter correction:

Alignment	BPM Errors	Mean	1σ	90%	95%
Nominal	None	1.6	1.1	3.2	4.0
"	Nominal	2.0	1.4	4.4	4.7
"	Worse	2.8	1.6	4.8	5.6
2 x Nominal	None	7.7	5.9	15	20
"	Nominal	8.0	6.7	15	21
"	Worse	11	7.4	20	26

With *nominal* magnet alignment, we achieve emittance of 5-10pm for 95% of seeds with *nominal* and *worse* BPM resolution

With 2 X nominal magnet alignment yields emittance near our 20pm target

Two parameter correction

Consider a two parameter algorithm

- 1. Measure orbit and dispersion. Minimize $\Sigma_i w_{c2} [kick_i]^2 + w_{o2} [\Delta y_i]^2 + w_{\eta 1} [\Delta \eta_i]^2$
- 2. Measure dispersion and coupling. Minimize $\Sigma_i w_{sq}[k_i]^2 + w_{\eta 2}[\Delta \eta_i]^2 + w_c[C_i]^2$

The two parameters are the ratio of the weights. The ratios are re-optimized in each step

Vertical emittance (pm) after one and two parameter correction:

Alignment	BPM Errors	Correction Type	Mean	1σ	90%	95%
2 x Nominal	Worse	1 parameter	11	7.4	20	26
"	"	2 parameter	6.5	6.7	9.6	11.3

- 2 X nominal survey alignment, 10μm relative and 100μm absolute BPM resolution
 - 2 parameter algorithm yields tuned emittance very < 20pm for 95% of seeds

July 8, 2008 ILCDR08

Alignment and Survey

Instrumentation - new equipment

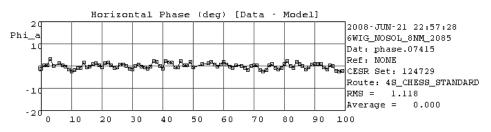
Digital level and laser tracker

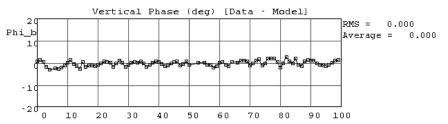
Network of survey monuments

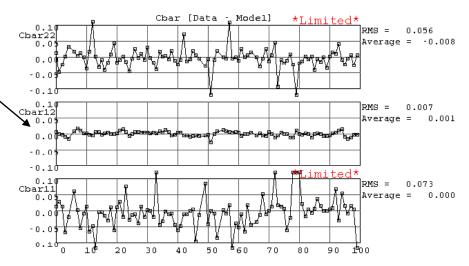
→Complete survey in a couple of weeks

Magnet mounting fixtures that permit precision adjustment

- beam based alignment


Phase/coupling correction


model = design


6 wiggler optics

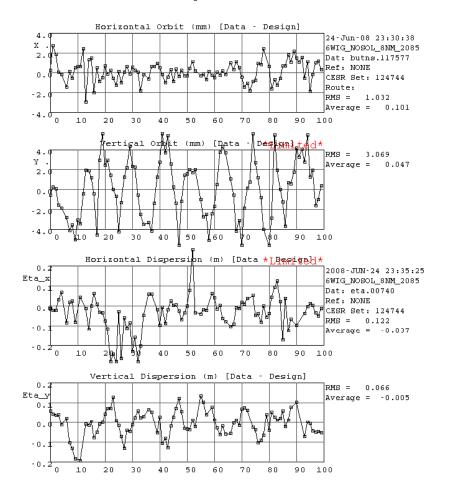
- -Measurement of betatron phase and coupling after correction using all 100 quads and 14 skew quads.
- -Contribution to vertical emittance due to coupling of horizontal

 $\varepsilon_{\rm v}/\varepsilon_{\rm h}$ (C_{12})² [$\varepsilon_{\rm h}({\rm design}) = 7.5{\rm nm}$]

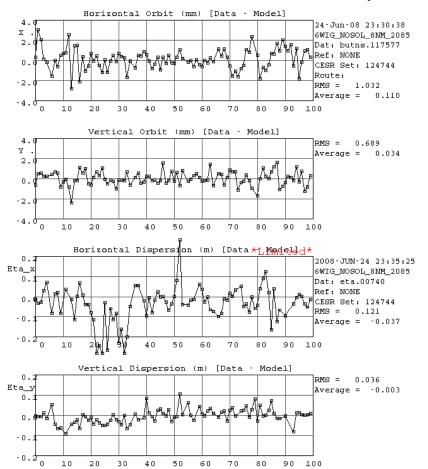
Coupling and dispersion correction

Correcting coupling to $\overline{C}_{12} < 1\%$ straightforward

Correcting dispersion is more difficult


-Dispersion measurement is sensitive to BPM tilts, nonlinearity, gain errors

July 8, 2008 ILCDR08 22


Orbit and dispersion measurement and "correction"

Data: all vertical steerings off

Measured orbit and dispersion with zero vertical steering correctors.

Data: all vertical steerings off
Model: minimize Data-model for orbit and vertical dispersion us:

Measured orbit/dispersion (data) - fitted

nodel using all vertical steering correctors.

BPM resolution

Relative BPM resolution critical to measurement of vertical dispersion

Dispersion depends on differential orbit measurement

$$\eta_{v} = [y(\delta/2) - y(-\delta/2)]/\delta$$
 $\delta \sim 1/1000$

In CesrTA optics dependence of emittance on vertical dispersion is

$$\varepsilon_{\rm v} \sim 1.5~{\rm X}~10^{-8}~\langle \eta^2 \rangle$$

Emittance scales with square of relative BPM error (and the energy offset δ used to measure dispersion)

$$\sigma$$
(single pass) ~ 10μm σ (N turn average) ~ 10μm/ \sqrt{N}

Note: $\sigma(\textit{nominal}) \sim 2 \mu m$ Achieve emittance target if $\sigma \sim 10 \mu m$

Beam Position Monitor System

- Presently (and for June 08 run) have a mixed dedicated digital system with twelve stations and a coaxial relay switched analog to digital system with ninety stations.
 - Digital system stores up to 10 K turns of bunch by bunch positions with a typical single pass resolution of \sim 30 microns.
 - From the multi-turn data, individual bunch betatron tunes can be easily determined to < 10 Hz.
 - (Upgraded digital system will be fully implemented within the next year)

Meanwhile we work with digital/analog hybrid

"AC" Dispersion

(Developing "AC" dispersion measurement technique as alternative to traditional orbit difference method.)

Dispersion is coupling of longitudinal and transverse motion

Measurement

- -Drive synchrotron oscillation by modulating RF at synch tune
- -Measure vertical & horizontal amplitudes and phases of signal at synch tune at BPMs

Then

$$\{\eta_v/\beta_v\} = (y_{amp}/z_{amp}) \sin(\phi_y - \phi_z)$$

$$\{\eta_h/\beta_h\} = (x_{amp}/z_{amp}) \sin(\phi_h - \phi_z)$$

Advantages:

- 1. Faster (30k turns) (RF frequency does not change)
- 2. Better signal to noise filter all but signal at synch tune
- 3. Nondestructive

July 8, 2008 ILCDR08 26

Beam Size Measurements

• X-ray beam size monitor

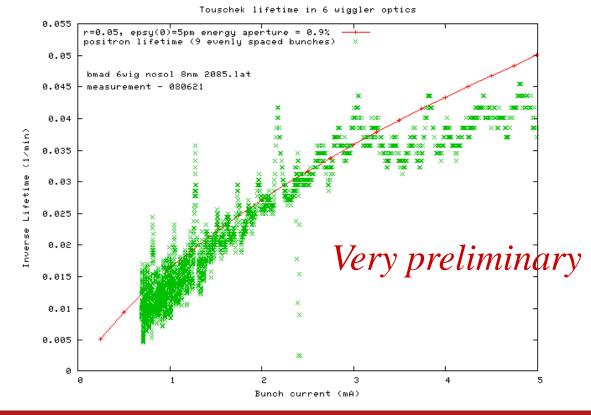
- 32 element linear photomultiplier array enables multi-turn bunch by bunch vertical beam size measurements using the same electronics as the digital beam position monitor system.
- − 2-3 µm resolution (ε_v =5pm $\rightarrow \sigma_v \sim 10$ µm)
- One each for electrons and positrons
- →Allows for real time low emittance tuning using dispersion and coupling bumps

July 8, 2008 ILCDR08 27

Intensity dependent effects

Emittance and lifetime

- Intrabeam scattering, Touschek lifetime


IBS depends on amplitude and source (dispersion or coupling) of vertical emittance and beam energy ($\sim \gamma^4$)

Lifetime depends beam size and energy aperture

We will measure dependency on

- -beam energy (1.5-5GeV)
- -RF voltage
- -Transverse coupling
- -Vertical dispersion

. . .

Intensity dependent effects

Lifetime

Parameter	Value
Е	2.0 GeV
N _{wiggler}	12
B_{max}	1.9 T
ε_{x} (geometric)	2.3 nm
ε_{v} (geometric) Target	5–10 pm
$ au_{ ext{x,v}}$	56 ms
$\sigma_{\rm E}/{ m E}$	8.1×10^{-4}
Q_z	0.070
Total RF Voltage	7.6 MV
$\sigma_{\rm z}$	8.9 mm
$\alpha_{\rm p}$	6.2×10^{-3}
N _{particles} /bunch	2×10^{10}
$ au_{ ext{Touschek}}$	>10 minutes
Bunch Spacing	4 ns

At emittance as low as 5-10pm and $2x10^{10}$ particles/bunch $\tau_{Touschek}$ decreases to ~10 minutes.

Experimental program

Cesr TA electron cloud program

- -2008
 - Install instrumented (RFA) dipole chambers (May)

June

- Electron cloud growth studies at 2-2.5GeV
- Low emittance (~8nm) operation and alignment studies (Cesr-c configuration)

July - August

- Reconfigure CESR for low emittance (wigglers to IR)
- Install wiggler chamber with RFA and mitigation hardware
- Install dipole chicane
- Optics line for xray beam size monitor
- Extend turn by turn BPM capability to a large fraction of ring
- Install spherical survey targets and nests and learn to use laser tracker

Fall

- Commission 2GeV 2.3nm optics [12 wigglers, CLEO solenoid off]
- Survey and alignment
- Beam based low emittance tuning
- Characterize electron cloud growth with instrumented chambers

 Dependence on bunch spacing, bunch charge, beam size, beam energy
- Explore e-cloud induced instabilities and emittance dilution
- Commission positron x-ray beam size monitor (~2μm resolution)

Experimental program

- Cesr TA electron cloud program
 - -2009

Winter

- Install instrumented quadrupole chambers, and dipole chambers with e-cloud mitigation
- Complete upgrade of BPMs
- Complete survey and alignment upgrade
- Commission electron x-ray beam size monitor
- Install solenoid windings in drift regions

Spring

- Single pass measurement of orbit and dispersion
- Electron cloud growth, instability and emittance dilution
- Low emittance tuning

Summer

- Install optics line for electron xray beam size monitor
- Complete longitudinal feedback upgrade
- Install chambers with alternative mitigation techniques*
- Install photon stop for 5GeV wiggler operation

Fall

- Complete evaluation of electron cloud growth in wiggler, dipole, quadrupole
 - Compare with simulation
- Continue program to achieve ultra-low vertical emittance
- Characterize electron cloud instability and emittance dilution effects at lowest achievable emittance
- Measure electron cloud growth and mitigation in wigglers at 5GeV

System status

- Status of beam based measurement/analysis
 - Instrumentation existing BPM system is 90% analog with relays and 10% bunch by bunch, turn by turn digital
 - Turn by turn BPM -
 - A subset of digital system has been incorporated into standard orbit measuring machinery for several years
 - Remainder of the digital system will be installed during the next year
 - Software (CESRV, Tao Cesr) / control system interface has been a standard control room tool for beam based correction for over a decade
 - For measuring orbit, dispersion, betatron phase, coupling
 - With the flexibility to implement one or two corrector algorithm
 - To translate fitted corrector values to magnet currents
 - And to load changes into magnet power supplies
 - ~ 15 minutes/iteration
 - Orbit response matrix measurements and analysis (characterize BPMs)