Beam Based Survey and Alignment of Ring Magnets

David Rubin
Cornell Laboratory for
Accelerator-Based Sciences and Education

Beam based alignment

- Measure zero vertical corrector orbit
- Use analysis tools to identify offset quadrupoles and tilted bends and to quantify
- Move magnets and repeat.

Zero corrector orbit

Data: zero vertical corretor

Wave analysis

Data: zero vertical corretor

Identify misaligned magnet

"Correct" for misalignment in IR with nearbv steerings (1E,1W)

 vertical orbit error (y_offset = +300 microns)

Move magnet and remeasure

After 300 micron move

```
Data: after moving ql7e
```


Change in vertical orbit

Data: after moving q17e

Orbit difference
data: after move ref: before move

Data: after moving 17 E
Ref: before moving 17E Model: Q17E y_offset $=0.3 \mathrm{~mm}$

The model is the orbit with a 300 micron offset of Q17E

Optimize IR correction

after moving q17e and optimizing with $1 E$ 1w

We managed to reduce RMS from 0.805 mm to .771 mm

Conclusions

-With wave analysis we can effectively identify "biggest" misalignments
-Combination of wave analysis, fitting, and survey data can identify more subtle errors
-Magnet moves have predictable outcomes

Future plans
SVD analysis to identify misaligments?
Include dispersion as a constraint (insensitive to BPM offset)

Limited by performance of BPM system so looking forward to upgrade

