David Rubin Cornell Laboratory for Accelerator-Based Sciences and Education

Traditional dispersion measurement

- Measure orbit
- Change ring energy ($\delta E/E = (\delta f_{rf}/f_{rf})/\alpha_{p}$)
- Measure again. $\eta_x = \Delta x/(\delta E/E)$

"AC" dispersion

- Drive an energy oscillation by modulating the RF phase at the synchrotron tune
- Measure the phase and amplitude of the vertical and horizontal signal at each BPM that is oscillating at the synchrotron tune
- Use the phase and amplitude information to reconstruct vertical and horizontal dispersion

Advantages:

1. Nondestructive

Use a signal bunch to measure dispersion without disturbing all of the other bunches in the ring

- 2. Fast Changing the ring energy via the RF frequency is slow, especially with high Q cavities
- 3. Better signal to noise (Filter all but signal at synch tune)

"AC" dispersion

Note that dispersion is z-x and z-y coupling

Use transverse coupling formalism to analyze dispersion

Review of transverse coupling formalism and measurement

 $T=VUV^{-1}$ (T is 4X4 full turn transport, U is block diagonal) propagates the phase space vector (x,x',y,y')

$$V = \begin{pmatrix} \mathcal{M} & C \\ -C^{+} & \mathcal{M} \end{pmatrix} \qquad \overline{C} = G_{b}^{-1}CG_{a} \qquad G = \begin{pmatrix} \sqrt{\beta_{a}} & 0 \\ -\alpha/\sqrt{\beta_{a}} & 1/\sqrt{\beta_{a}} \end{pmatrix}$$

In the absence of coupling, C=0, V= I_{4X4} , U=T

To measure x-y coupling

Drive beam at horizontal [a-mode] (or vertical [b-mode]) frequency.

The beam responds resonantly

Measure x and y amplitude and phase of the a-mode (b-mode) at each BPM

Finite y_{amp} indicates coupling

The relative phase tells us something about its source

We find that:
$$\overline{C}_{12} = \frac{y_{amp}}{x_{amp}} \sin(\varphi_y - \varphi_x)$$
 $\overline{C}_{22} = \frac{y_{amp}}{x_{amp}} \cos(\varphi_y - \varphi_x)$

If we drive the b-mode we can extract \overline{C}_{11}

Note: \overline{C}_{12} is insensitive to BPM tilts If there is no coupling, but a BPM is tilted, then $y_{amp} \neq 0$, but $\phi_y = \phi_x \rightarrow \overline{C}_{12} = 0$

To measure x(y) - z coupling

Construct the matrix that propagates x-z motion. Again T=VUV⁻¹ (T is 4X4 full turn transport, U is block diagonal)

But here T propagates the phase space vector (x,x',l,δ) [or (y,y',l,δ)]

As before we can write:

$$V = \begin{pmatrix} \gamma I & C \\ -C^{+} & \gamma I \end{pmatrix} \qquad \overline{C} = G_{b}^{-1} C G_{a} \qquad G = \begin{pmatrix} \sqrt{\beta_{a}} & 0 \\ -\alpha/\sqrt{\beta_{a}} & 1/\sqrt{\beta_{a}} \end{pmatrix}$$

Here, the a-mode corresponds to horizontal[vertical] motion and the b-mode is synchrotron motion

Now C=0 → no coupling of longitudinal and horizontal motion,

That is, zero dispersion

It turns out that n the limit $Q_s \rightarrow 0$

$$C_{12}(z-x) = \eta_{x}$$
 $C_{22}(z-x) = \eta'_{x}$

$$C_{12}(z-y) = \eta_{y,} C_{22}(z-y) = \eta'_{y}$$

Drive beam at synchrotron tune (z-mode)
Measure x, y (and z?) amplitude and phase at each BPM

Then as with transverse coupling

$$\overline{C}_{12} = \frac{x_{amp}}{z_{amp}} \sin(\varphi_x - \varphi_z)$$

$$\overline{C}_{12} = \frac{y_{amp}}{z_{amp}} \sin(\varphi_y - \varphi_z)$$

Is related to the horizontal dispersion according to

$$\overline{C} = G_b^{-1} C G_a \sim \eta/(\beta_a \beta_b)^{1/2}$$

to the vertical dispersion (η_y)

Dispersion

• Simulation of "AC" dispersion measurement

Introduce a vertical kick into CesrTA optics to generate vertical dispersion

- -Drive synchrotron oscillation by modulating RF at synch tune (In the simulation: apply an energy kick modulated at synch tune) and track for >30k turns
- -"Measure" vertical & horizontal amplitudes and phases of synch tune signal at BPMs
- Construct C₁₂

"measured c_{12} " - 30k turn simulation

"model eta" - Model dispersion

July 8, 2008 ILCDR08 7

[&]quot;model c_{12} " - Model y-z and x-z coupling

We measure x_{amp} and $\phi_{x_i} y_{amp}$ and ϕ_{y}

But we are unable (so far) to measure z_{amp} and ϕ_z with sufficient resolution Longitudinal parameters come from the design lattice (Perhaps with new BPM system we will be able to extract ϕ_z from $2f_s$)

 $z_{amp} = \sqrt{(a_z \beta_z)}$, $13m < \beta_z < 14.6m$ (CesrTA optics) $\rightarrow z_{amp}$ is very nearly constant - there is an overall unknown scale (a_z)

$$0 < \phi_z < 36^{\circ}$$
.

We compute ϕ_z from the design optics at each BPM

- there is an overall unknown phase offset (ϕ_0)
- Determine a_z , ϕ_0 by fitting x data to model horizontal C_{12}
 - Then use fitted parameters to determine vertical C_{12}

Change vertical steering 31e +200cu and measure orbit and "ac" dispersion (data). Restore vert 31e to zero and remeasure orbit and dispersion (ref)

"AC" and "DC" measurements

"ac" dispersion

(same as last slide)

Same steering change with "DC" dispersion measurement

Dispersion modeled and measured

"Data": measurement with v31e=200cu

"Ref": measurement with v31e=0

"Model": modeled orbit and dispersion with v31e=200cu

AC Dispersion

Conclusions

Dispersion is coupling of longitudinal and transverse motion

Measurement

- -Drive synchrotron oscillation by modulating RF at synch tune
- -Measure vertical & horizontal amplitudes and phases of signal at synch tune at BPMs

Then

$$\{\eta_v/\beta_v\} = (y_{amp}/z_{amp}) \sin(\phi_y - \phi_z)$$

$$\{\eta_h/\beta_h\} = (x_{amp}/z_{amp}) \sin(\phi_h - \phi_z)$$

Advantages?:

- 1. Faster (30k turns) (RF frequency does not change)
- 2. Better signal to noise (remains to be seen) filter all but signal at synch tune
- 3. Nondestructive (RF frequency does not change) Witness bunch?