NSLS-II Lattice Design Strategies

Weiming Guo

07/10/08

Acknowledgement:

J. Bengtsson S. Kramer S. Krinsky B. Nash

Outline

- **1. Introduction to the linear lattice**
- 2. Linear lattice grid
- 3. Nonlinear requirements: injection and Touschek scattering
- 4. Minimum needed sextupole families
- **5. Required physical aperture**
- 6. Effects of the multipole field errors

Method:

Simulation using Elegant

Main Design Parameters

Beam Energy	3 GeV
Circumference	792 m
Circulating current	500 mA
Total number of buckets	1320
Lifetime	3 hours
Electron beam stability size	10% beam
Top-off injection current stability	<1%
ID straights for undulators	>21
Straight length	9.3/6.6 m

Magnets and lattice

Quad. Family: 8, 10 magnets per cell Sext. Family: 9, 10 magnets per cell Chromaticity per cell: -3.4/-1.4

Linear Lattice design approaches

1. Large bending radius enhances the effect of the damping wigglers

$$B = 0.4T, \rho = 25m, \begin{cases} D_x = \rho(1 - \cos \theta) \\ D_x' = \sin \theta \end{cases}$$
2. Strict double-bend-acromat
Two reasons NSLS-II is sensitive to the residual dispersion:
• 1nm emittance. For $\beta_x = 2m, \eta_x = 4.5$
cm, $\beta_x \varepsilon_x \sim (\eta_x \sigma_\delta)^2$
• Damping wiggler has quantumn excitation effect
• Contempositive double doubl

Tunability: An Ensemble of Stable Solutions

 $v_x \pm 0.5$ $v_y \pm 0.5$ $\Delta v_x / v_x = \pm 1.5\%$ in horizontal

$$\Delta v_y / v_y = \pm 3\%$$
 in vertical

♦=Stable solution found by the Elegant optimizer

	16.8	- 🗇	\$'	\diamond	\$ 	\Diamond	\$	\Diamond	\ \	\diamond	· \	\diamond	-
	166	\Diamond											
	10.0	- ◇	\diamond	1									
	16.4	◊	\diamond										
		- ⊘	\diamond	1									
	160	\Diamond											
>	10.2	F⊘	\diamond	1									
2	160	♦	\diamond										
	10.0	- ⊘	\diamond	1									
	15.8	\Diamond											
		- ⊘	\diamond	-									
	150	\Diamond											
	10.0	- 🗇	\diamond	+									
		\Diamond	♦	\diamond	♦	\diamond	÷	\diamond	\diamond	\diamond	\diamond	\diamond	
			33	. 0	33	.2	33	.4	33	.6	33	.8	
	$\mathcal{V}_{\mathbb{V}}$												
							X						

•Each solution meets the requirements on the emittance, symmetry, chromatic conditions, beta functions, and chromaticity

•This ensemble of solutions is used as input for the dynamic aperture optimization

Lattice Functions of the Solutions

7

U.S. DEPARTMENT OF ENERGY

Quadrupole Strength Variation Range

Variation of K1 (1/m²)

Conclusion: Although we are tuning in a large range, the relative change of the quadrupole Strength is <30%. This allows us to use weaker power supplies for certain quadrupoles.

K1 Margin for the Customization of β_x

Quad ave	$\frac{v1-ave.}{ave.}$	$\frac{v2-ave.}{ave.}$
QH1 -0.625	103.06	146.55
QH2 1.662	17.58	26.35
QH3 -1.520	7.19	15.15
QL1 -1.320	7.52	11.26
QL2 2.112	1.23	1.56
QL3 -1.511	1.31	1.38
QM1 -0.717	6.32	7.54
QM2 1.169	1.22	1.44

Variation of K1 (1/m²)

NATIONAL LABORATORY

BROOKHAVEN SCIENCE ASSOCIATES

QH2,QL2: K1<2.2, 37% margin QM1: K1<1.3, ~ 25% margin Rest: K1<2, ~25% margin

Nonlinear Design Goal

(>11mm) for injection

On momentum particle

2. Sufficient dynamic aperture to keep Touschek scattered particles with δ = ±2.5%

Off momentum particle

Source of the nonlinearity

Frist order chromatic terms (5)

$$\begin{array}{rcl} h_{11001} & \rightarrow & \xi_{x}^{(1)} \\ h_{00111} & \rightarrow & \xi_{y}^{(1)} \\ h_{10002} & \rightarrow & D^{(2)} \\ h_{20001} & \rightarrow & \frac{d \beta_{x}}{d \delta} \\ h_{00201} & \rightarrow & \frac{d \beta_{y}}{d \delta} \end{array}$$

Amplitude tune dependence

Second order chromaticity

Frist order geometric terms (5)

$$h_{21000} \rightarrow V_{x}$$

$$h_{30000} \rightarrow 3V_{x}$$

$$h_{10110} \rightarrow V_{x}$$

$$h_{10020} \rightarrow V_{x} - 2V_{y}$$

$$h_{10200} \rightarrow V_{x} + 2V_{y}$$

 $\xi_{x}^{(2)} = -\frac{1}{2}\xi_{x}^{(1)} + \frac{1}{8\pi}\int ds \{K_{2}D^{(2)}\beta_{x} - [K_{1} - K_{2}D^{(1)}]\frac{d\beta_{x}}{d\delta}\}$ $\xi_{y}^{(2)} = -\frac{1}{2}\xi_{y}^{(1)} - \frac{1}{8\pi}\int ds \{K_{2}D^{(2)}\beta_{y} + [K_{1} - K_{2}D^{(1)}]\frac{d\beta_{y}}{d\delta}\}$

NATIONAL LABORA

BROOKHAVEN SCIENCE ASSOCIATES

 $\frac{\partial V_{x,y}}{\partial J_{x,y}}$

Number of chromatic sextupole families

$$\begin{split} \Delta \xi^{(1)}{}_{x,y} &= \pm \int ds K_{2} D^{(1)} \beta_{x,y} \\ D^{(2)} &= -D^{(1)} + \frac{\sqrt{\beta}}{2\sin(\pi\nu)} \int ds (K_{1} - \frac{K_{2}}{2} D^{(1)}) D^{(1)} \sqrt{\beta} \cos(|\Delta \Psi| - \pi\nu) \\ &= -D^{(1)} + \frac{\sqrt{\beta}}{2\sin(\pi\nu)} \int ds K_{1} D^{(1)} \sqrt{\beta} \cos(|\Delta \Psi| - \pi\nu) - c \times \Delta \xi_{x}^{(1)} \\ \frac{d\beta_{x}}{d\delta} &= \frac{\beta_{x}}{2\sin(2\pi\nu)} \int ds (K_{1} - K_{2} D^{(1)}) \beta_{x} \cos(2|\Delta \Psi| - 2\pi\nu) \\ \frac{d\beta_{y}}{d\delta} &= \frac{-\beta_{y}}{2\sin(2\pi\nu)} \int ds (K_{1} - K_{2} D^{(1)}) \beta_{y} \cos(2|\Delta \Psi| - 2\pi\nu) \end{split}$$

Conclusion:

Because the betatron phase advance in the dispersive region is small (x: ~ 10°, y~ 20°), the five chromatic terms have only two degree of freedom. \rightarrow 7~8 sextupole families

Stay-clear aperture

Dynamic Aperture with Multipole Error

The Feb.-08 multipole components at 25 mm

Magnet Type	Magnet Aperture (mm)	Multipole Order	Relative Strength (x10 ⁻⁴)
Quad	66	6	1
Quad	66	10	3
Sext	68	9	1
Sext	68	15	2

Effects of Multipoles

NATIONAL LABORATORY

BROOKHAVEN SCIENCE ASSOCIATES

Amplitude Tune Dependence

NATIONAL LABORATORY

BROOKHAVEN SCIENCE ASSOCIATES

Why Negative Momentum?

New Specifications

Multipole components of high precision magnets (25 mm)

Magnet Type	Magnet Aperture (mm)	Multipole Order	Relative Strength (x10 ⁻⁴)
Quad	90	6	1
Quad	90	10	0.5
Quad	90	14	0.1
Sext	76	9	0.5
Sext	76	15	0.5
Sext	76	21	0.5

Summary

•Linear lattice is designed to enhance the effects of the damping wigglers

•A grid of stable solutions is used to determine the power supply specifications; and for nonlinear optimization

•Nonlinear design goal to provide sufficient dynamic aperture for injection and Touschek scattered particles up to δ =2.5%

•There are 8 sextupole families in the lattice, one more might be added.

•The physical aperture is conservatively retained.

•The reduction of the dynamic aperture due to multipole errors is shown to be the momentum related tune shift with amplitude.

•Further optimization of the dynamic aperture is proceeding.

