OPTICS CORRECTION

AT KEKB

K. Oide

July 10, 2008 @ ILCDR08

Credits: N. Akasaka, H. Fukuma, S. Hiramatsu, H. Koiso, M. Masuzawa, A. Morita, Y. Ohnishi, K. Satoh, M. Tejima, M. Tobiyama, KEKB Accelerator Group

KEKB Optics

* $3.5 \mathrm{GeV}+8 \mathrm{GeV}$ double ring collider with one collision point, 3016 m circumference.
* About 450 quads, 110 dipoles, 110 sextupoles per ring.
* 2.5π unit cell, -I transformation between paired sextupoles.
* ν_{x} close to a half integer: $0.505(\mathrm{LER}) \& 0.511$ (HER) at collision.
* 450 BPMs per ring, about 30 per ring are TBT BPMs.

Ensures wide dynamic aperture

Beam based diagnostics for BPMs (1)

* Beam-based alignment: Quad-BPM

227 QX6E_2_2008_2_9_19_19_10_x.dat 225 QX4E_2_2008_2_9_19_27_56_x.dat

* Once a year, or anything happened to a BPM such as reconnection of cables, realignment, etc.
* BPMs near sextupoles have capacitive sensors to measure relative transverse position of BPMs to sextupoles. \qquad

Beam based diagnostics for BPMs (2)

* Gain mapping of BPM electrodes

CALIBRATION OF KEKB BEAM POSITION MONITORS

PAC97

Kotaro Satoh and Masaki Tejima

KEK, High Energy Accelerator Research Organization
Oho 1-1, Tsukuba, Ibaraki 305 Japan

Abstract

This paper first proposes a practical model for output signals of BPM electrodes. The model is based on a definition of the geometric center of a BPM head, and on the assumption that the character of the head can be specified only by a small number of parameters, the relative gains of electrodes. On the basis of the model, calibration was done to find the relative gains of all KEKB LER BPM heads. The paper reports and discusses the calibration results

1 INTRODUCTION
LER BPM Consistency Current: $\quad \mathbf{3 7 . 3 4 m A}$

Figure 1: Coordinate system and an image of the model monitor.

LER BPM Consistency Current
248.84 mA

X-y coupling correction

* Kick the beam by horizontal dc correctors at non-coupled, non-dispersive places.
* Measure leaked closed orbit in the vertical plane.
* Correct the leak by vertical symmetric bumps at sextupole pairs and skew quads around the IP.
* Only 12 correctors, with equally separated phases, are used.

Dispersion correction

* Change rf frequency by $\pm 100 \mathrm{~Hz}$, measure the orbit change in x and y .
* Correct the difference from the model by horizontal \& vertical antisymmetric bumps at sextupole pairs.
* Residuals: $\Delta \eta_{x, \mathrm{rms}} \approx 10 \mathrm{~mm}, \Delta \eta_{y, \mathrm{rms}} \approx 8 \mathrm{~mm}$

Before correction

DISP 06 19_2008 19:19:31

After 1 dispersion and 1 coupling correction applied alternatively.

Note that the vertical scale becomes less

β correction

* Kick the beam by dc correctors in x and y , measure the orbit response in each plane.
* Fit the response with $\beta \mathrm{s}$ and phases at each BPM and the kicked correctors, assuming x-y coupling to have been already corrected. 6 correctors per plane.
* Correct the difference from the model by fudge factors of quads.
* Residuals: $\left(\Delta \beta / \beta_{0}\right)_{x, y \mathrm{rms}} \approx 6 \%$

Iteration

2008_06_19_19_06_29fop	Fill-Length Optimization
2008_06_19_19_06_32luh	Beam Collision Panel
2008_06_19_19_09_12XY_Coupling	MeasOptHER
2008_06_19_19_12_59Dispersion	MeasOptHER
2008_06_19_19_18_27XY_Coupling	MeasOptHER
2008_06_19_19_21_34Dispersion	$\underline{\text { MeasOptHER }}$
2008_06_19_19_22_29Dispersion	$\underline{\text { MeasOptHER }}$
2008_06_19_19_23_29Dispersion	$\underline{\text { MeasOptHER }}$
2008_06_19_19_31_36Global_Beta	MeasOptHER
2008_06_19_19_38_29Global_Beta	MeasOptHER
2008_06_19_20_16_46_amsad8	$\underline{\text { amsad8 screen capture }}$
2008_06_19_20_34_16_amsad8	$\underline{\text { amsad8 screen capture }}$

*A loop of coupling, dispersion, β corrections takes 30-60 minutes per ring to converge. (l correction takes 3.5 to 7 minutes)

coupling

* We do not have to solve the entire problem at once by a single big matrix.
* Although these corrections are not independent, their cross-talks are smaller than the diagonal parts, so the iteration converges quickly.

Issues

* Although $\varepsilon_{y} / \varepsilon_{x} \approx 0.5 \%$ is achieved by the correction....
* High current optics can be deformed due to focusing by the image current, electron cloud, thermal expansion, etc. Even hard to measure them.
* Off-momentum optics.
* Arc-to-arc energy deviation due to radiation and rf.
* No direct measurement at the IP. No information relative to the other beam.
* Slow drifts in 2 weeks.

