Review of Electron Cloud R&D at KEKB
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Diagnostics

=« Beam size blow-up: Starting point of our EC R&D
— The KEKB LER (positron ring) has suffered vertical
beam size blow-up due to electron clouds, which

deteriorated the luminosity.

— Single beam and multi-bunch effect of EC.
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Basic parameters of KEKB LER
Energy 3.5 GeV
Circumference 3016.26 m
Nominal bunch current 1.3 mA
Nominal bunch spacing 2~8 ns
Harmonic number 5120

RMS beam size (x/y) 0.42/0.06 mm

Betatron tune 45.51/43.57
RF voltage 8 MV
Synchrotron tune 0.024

Radiation damping time 40 ms
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Diagnostics

=« Beam size blow up: Threshold
— The blowup had a threshold which was determined by
the charge density (bunch current/bunch spacing).
- Support the blowup due to head-tail instability
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This supports that the head-tail instability is a cause of blow-up. | ECLOUDO2
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Diagnostics

« Beam size blow up: Effect on luminosity
— Measured Using Bunch-by-Bunch Luminosity monitor
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» Specific luminosity of
observer bunch is lower
than that of regular bunches
above 0.4 mA, but is the
same below 0.4 mA.

» Consistent with sideband
behavior, and explanation
that loss of specific
luminosity is due to electron
cloud instability.

J. Flanagan,
ECLOUDO2
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Diagnostics

« Build up
— Tune shift Is another indication of EC.

— Vertical betatron tune increased along the train and
almost saturated after several ten bunches.
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Simulation (F. Zimmermann)
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Tune shift and build-up time is consistent with simulation.
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Diagnostics

=« Head-tail instability: Synchro-Betatron sidebands
— Direct evidence of Head-Tall instability due to EC

V. Tune\" _ /Sideband Peak

Buncthumber
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» Sideband appears at beam-size
blow-up threshold, initially at ~
vy, + Vg, With separation distance
from v, increasing as cloud
density increases.

» Sideband peak moves with
betatron peak when betatron

0.65

05 0.55 06
Fractional Tune

LER single beam, 4 trains, 100 bunches per train, 4 rf bucket spacing
Solenoids off: beam size increased from 60 um ->283 um at 400 mA

« Vertical feedback gain lowered
— This brings out the vertical tune without external excitation

Bunch Oscillation Recorder (BOR)

— Digitizer synched to RF clock, plus 20-MByte memory.

— Can record 4096 turns x 5120 buckets worth of data.

— Calculate Fourier power spectrum of each bunch separately.

. tune is changed.

"'« Sideband separation from v,
changes with change in v..

 Position of the first bunch
exhibiting the side band shifted
with v..

J. Flanagan, ECLOUDO7
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Diagnostics

« Head-tall instability: Synchro-Betatron sidebands
— The behavior is consistent

with simulation Simulation (PEHTS)

(HEADTAIL gives similar results)
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FIG. 1. Two-dimensional plot of vertical bunch specinum v tune
sus bunch number. The horzontal axis is the fractional tune,
from 0.5 on the left edge to 007 on the right edge. The vertical 0.0004 ' ' P Ae1g;r-""
axis is the bunch number in the train, from 1 on the bottom edge 5012
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Diagnostics

« Coupled bunch instability
— A small betatron oscillation of a bunch is transmitted,
amplified to other bunches via the electron cloud.
—> Transverse coupled-bunch instability is excited.
— Clear evidence of an electron cloud induced coupled-
bunch instability.
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M. Tobiyama, ECLOUDOQ7
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Diagnostics

=« Coupled bunch instability

— The experimental results supported the simulation
where the instablility is dominated by the electron clouds
In the drift space with the lower secondary emission
rate o, = 1.0 rather than 1.5.
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Diagnostics

« Electron Density

Electron Monitors

Retarding field analyzer type electron monitors
are set at pump ports of KEKB LER.

Shield Grid \

Retarding Grid — ]

L-Pump Port

Conceptual
drawing of the
monitor.
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K. Kanazawa,
ECLOUDO7
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Diagnostics

« Electron Density

—Bias -2kV

—_ KEKB LER (Energy>2keV)
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Un reliable

Diagnostics

« Electron Density
— Example of measurement
— Useful to directly estimate the electron density.

« Electron Current
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Measurements in solenoid and Q-magnet are planned
- Kanazawa-san'’s talk.
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Diagnostics

« SEY (Secondary Electron Yield)

— SEY Is an important parameters in considering EC build
up by multipactoring.

— Measurement of SEY of various materials, such as
copper, copper with coatings and graphlte using
sample pieced has been performed in laboratories.

— Measurements of samples exposed to real positron
beam were also tried recently.

In situ. Measurement (i.e. without

exnosure to air) is nossible
I\JU\JMI\I W\J MII/ I PU\J\JIUI\J-

S. Kato, KEK
Review 2007

Sample Surface 13
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Diagnostics
« SEY

— Direct measurement using samples

25,
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for all samples.

* Results are almost consistent with those results obtained at Lab.
* e beam induced graphitization was found for copper surface exposed to e-
cloud as found in lab experiment. In lab, the same graphite formation at TiN

surface + graphite and carbide formation at NEG surface were found.

2008/7/8
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Diagnostics

= SEY
— Estimation from measured electron current, utilizing a

simulation.
15107 Measured Ie. and flttlng 14 Estimate 8max and Ne 3.5 bucket spacing
W CulCal] (7,=028,5_=12) i ooy | [Stralght (Fujp] ] 1389 bunches
B NEG [Call (=023, 5 _=1.1) 13 L] O NEG ] Repeller -1000V
B TiN[Cal] (7,20.12.5_=1.0) 2 Il T ]
o e 12 fA=11-1.3 0204
B e Iic: G
=3 = Cu L 1T . HBD
o A=11-13 NEG | B | m{uin
1/1389/3 5 {1389) . 1] Sl Cu 10.28 1.1-1.25
5 (g FVr =-1000 [ &
0.9 LAR NEG|0.23 1.0-1.15
. FAAA
TiN VYN
' 08 b-Bha TiN |0.12  0.8-1.0
n i
0 500 1000 1500 2000 0.1 015 02 025 03 035
fb [MmA] , [electrons photon'1]

» Measured I, can be reproduced with estimated ¢,,,, and n, (photoelectron yield),
which are consistent with those obtained at arc section.

* TiN still seems better from a view point of low J,,,, and also low 7,. 15
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Mitigation

= Solenoid
— Very effective method for field-free region.
— Solenoid has been wound since 2000, and now over
95 % of drift region was covered.
— Blow up is now almost suppressed up to 1.7 A (3.06
RF bUCket SpaCIng) Total length of solenoid

preliminary (very rough estimation)
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H. Fukuma, EUEF_OUDOZ
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Mitigation
=« Solenoid

Effect of solenoid
Effect of solenoid on vertical beam size (LER) (after second l]lSt‘r'lllﬂtlDll)
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» Solenoid is also useful to determine the location of EC.

H. Fukuma, ECLOUDO2
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Mitigation

= Beam pipe with antechamber

— Effective to reduce photoelectron effect
= Photoelectron: Seed of EC

— Important in field-free region
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Mitigation

= Coating to reduce SEY
— TIN or NEG coating has been said to be effective to
reduce SEY. Important in magnet.
— Test chambers with coatings were installed into the ring,
and the electron densities were measured and compared
each other.

Effect of coatings a~0, D8 straight
circular (r=47)
e Cu Bunch pattern [1, 1389, 3.5]
" = TiN coated Bias =- 1kV
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z 210" 2 :
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A Iy

E K J | NEG coating:

C L Pl ¢ | — SAES Getters * TIN coating is the most
IS 110 ’ = ="

-.: ¥ ‘% ) .... 3 . . . - - -

: TiN coating: promising coating at

m BNL

present
. * h, (photoelectron yield)
! ! 2 is also low
LER Bunch Current [mA]
K.Kanazawa, ECLOUDO7 19
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Mitigation

= Coating to reduce SEY

— Recently, combination of beam
pipe with antechambers and

— Coating system available for ~4

TIN coating was studied.

m pipe was set up.

— Thickness is ~200 nm, which is |

2008/7/8

determined from adhesiveness

of f|Im and Smax ( ~0. 84)

ILCDR 2008.07.08 -

K. Shibata, EPAC2008

11 Cornell Univ
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Mitigation

= Coating to reduce SEY
— Beam pipe with antechambers with TIN coating was

Coated

2008/7/8

installed into the ring.
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Mitigation

= Clearing Electrode
— One of the effective cure method in magnet.
— Recently, an experiment in KEKB LER has just started.

Electrode

Test chamber Monitor
22
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Mitigation

= Clearing Electrode
— Drastic decrease In electron density was
demonstrated by applying positive voltage.

Vr = -0.0 kY, 200 mA (4/200/3)
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V, =0 kV yg/m

Log

1 000E-04 (

—

<

b 1.000E-06 [
)

1.000E-08 ¥ bmume®

1.000E-10 »———

2008/7/8

Details will be reported later.
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Summary

= Various measurements, simulations to understand
EC properties, and experiments for its mitigation
have been performed at KEKB positron ring.

= Simulation explained the observations well, but
guestions still remains.

= Mitigation methods, such as solenoid, coating,
duct structure and clearing electrode gave
reasonable effect. The solenoid showed a
marvelous effect. The cure in magnets is a still

remained problem.

« KEKB will stop next year. We have to utilize it as
efficiently as possible.

24
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Backup slide
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Diagnostics

= Beam size blow up: Effect of chromaticity
— Blow-up was not observed when the chromaticity was

enough high.

Effect of chromaticity
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H. Fukuma,
ECLOUDO2

Cloud density at transverse mode coupling instabity (TMCI) threshold p,;,
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Vertical: 2.2x10%? + 5.8x10° Q'y
Even if DQ’y = 10, size change ~ 3 %
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