EC plans in connection with eRHIC

Wolfram Fischer

ILCDR08 – Cornell University, Ithaca, New York 10 July 2008

Outline

1. E-cloud in RHIC dynamic pressure rise, instabilities, emittance growth

2. E-cloud in eRHIC/ELIC

bunch spacing and bunch intensity

3. Possible experiments at CesrTA

maximization of average ion bunch current

Relativistic Heavy Ion Collider

ERL-based eRHIC

V. Ptitsyn, EIC Collaboration Meeting, 05/19/08

- 10 GeV electron energy (possible upgrade to 20 GeV)
- 5 recirculation passes (4 of them in the RHIC tunnel)
- Multiple e-p/A IPs
- Polarization transparency at all energies for the e-beam
- Ability to take full advantage of transverse cooling of the hadron beams

E-cloud in RHIC

3 areas of concern:

1. Dynamic pressure rise

currently not a concern, NEG coated pipes in warm sections, pre-pumping in cold sections

2. Instabilities at transition

e-clouds lower instability threshold, instability is main ion intensity limit (protons do not cross transition)

3. Incoherent emittance growth (p at injection)

installation of new 9 MHz cavity (h = 120 compared to h = 360 now) will result in longer bunches and reduced e-cloud

First pressure rise observation

E-cloud observation: beam instability

Crossing transition with slowly ramping sc. magnets (all ions except protons)

- \rightarrow Instability limits bunch intensities for ions ($\sim 1.5 2.0 \times 10^{11} \,\mathrm{e}$)
- \rightarrow Instability is fast ($\tau = 15$ ms), transverse, single bunch
- γ_t -jump implemented
- Octupoles near transition
- Chromaticity control (need ξ-jump for higher bunch intensities)

→ Electron clouds can lower stability threshold, will gain more operational experience in current Au-Au run

E-cloud observation: emittance growth

2 polarized proton stores

Courtesy S.Y. Zhang

Short bunches with same intensity lead to smaller luminosity.

[Single short-bunch store only for comparison. ε-growth from reasons other than e-cloud possible.]

[E. Benedetto et al., "Simulation study on electron ...", PRST-AB 8, 124402 (2005); **E. Benedetto et al.,** "Incoherent effects of electron clouds in proton storage rings", PRL 97, 034801 (2006); S.Y. Zhang and V. Ptitsyn, "Proton beam emittance growth in RHIC", PRST-AB 11, 051001 (2008).]

Proton beams in RHIC and eRHIC

Parameter	Unit	RHIC latest	eRHIC ERL current base	eRHIC other ERL
Energy	GeV	250	250	250
Bunch spacing	ns	107	71	?
Bunch intensity	1011	2.0	2.0	?
Rms emittance, norm.	μm	20	6	6
Rms bunch length	cm	80	20	?
$L \sim f_{coll} N_e N_p$ For ERL version, luminosity is proportional to average beam current of both rings			retains current proton rf system	new proton rf system, maximize avg beam current

Selected machines with electron clouds

E-cloud in current RHIC vs. eRHIC

Expect serious e-cloud problems for N_b =2.0×10¹¹ and 36 ns bunch spacing (Analysis needed for warm double beam, and cold regions also.)

Possible experiments at CesrTA

Create highest possible <u>average</u> e⁺ beam, constrained by electron cloud

- Maximize bunch charge >2x10¹⁰, ideally as high as 2x10¹¹
- Minimize bunch spacing
 4 ns possible

eRHIC: $I_{avg} = 445 \text{ mA}$ CesrTA: $I_{avg} = 800 \text{ mA}$ (avg. over train)

Generally: test e-cloud density scaling with bunch charge and bunch spacing

(To what extent can this go beyond B-factories?)