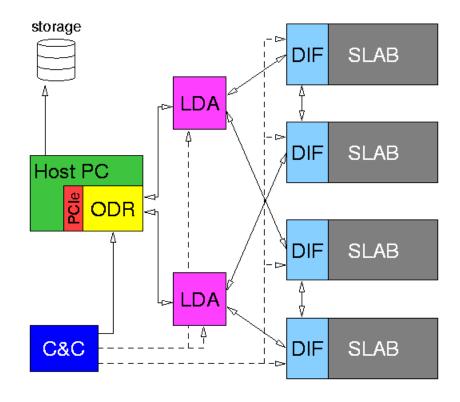
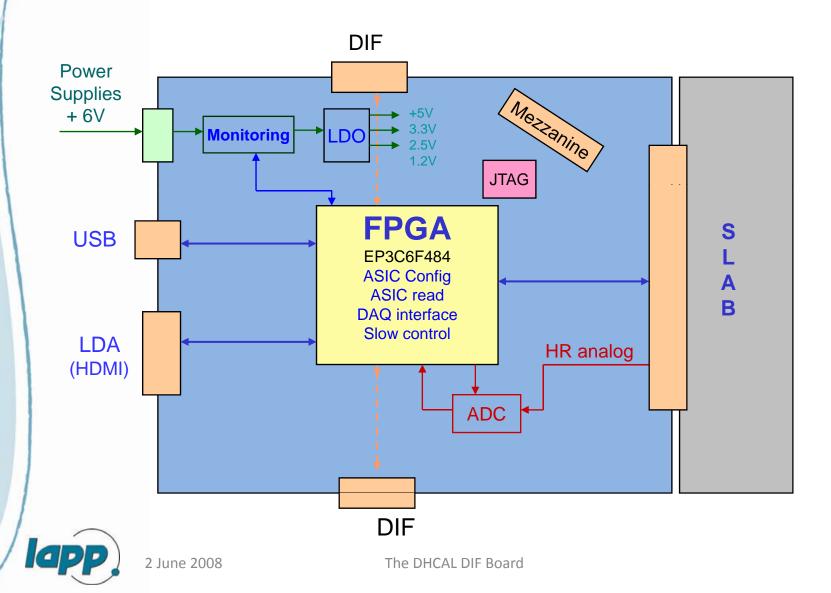


Status of the DHCAL DIF Detector InterFace Board

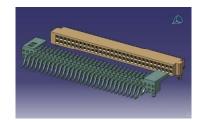
Sébastien Cap, Guillaume Vouters, Julie Prast

Julie Prast, Calice Electronics Meeting at LAL, June 2008




Aims of the DHCAL DIF

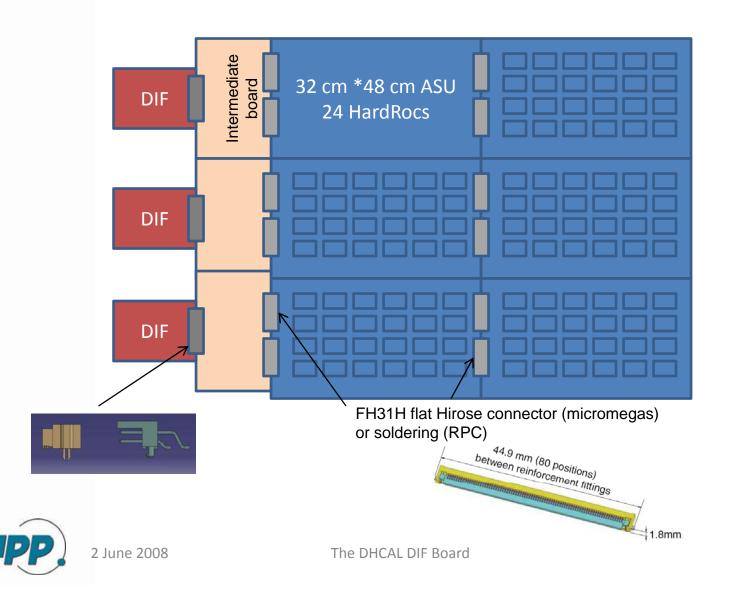
- Interface DHCAL ASUs with the DAQ
 - Configure the VFE chips
 - Perform digital readout
 - Power cycling, ...
 - LDA interface (final DAQ)
 - PC interface through USB for debug and standalone.
 - Others:
 - Micromegas and RPC
 - Asics : Hardrocs or Lyon's chip


Architecture of the DIF Board

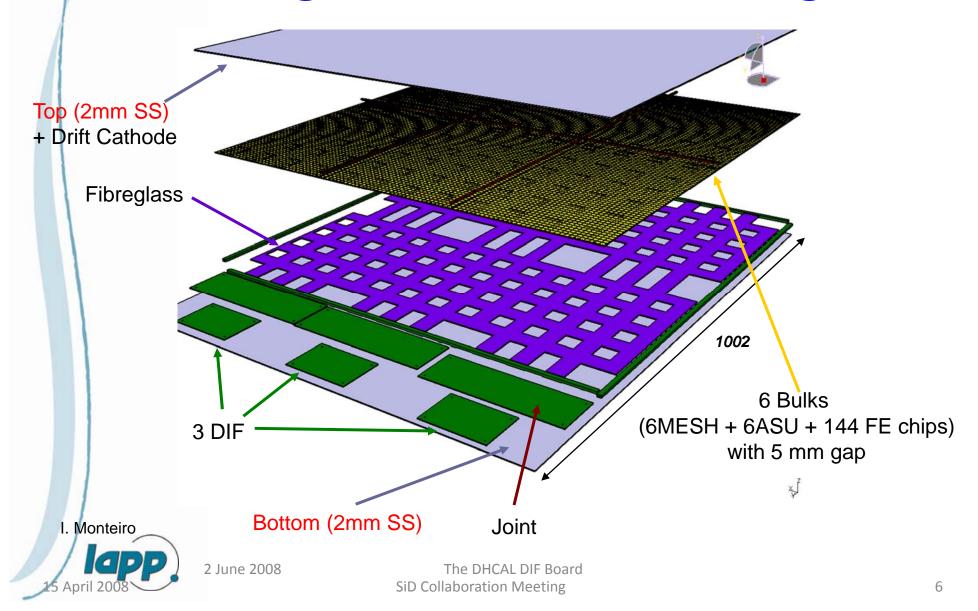
SLAB Interface compliant with the DIF task force

GND	1	2	GND
MUX3_CSn	3	4	Analog_0
MUX2 CSn	5	6	GND
MUX1_CSn	5 7	8	Analog_1
spare1	9	10	GND
MUX ENN	11	12	C_test
MUX_WRN	13	14	GND
spare2	15	18	MUX_A4
en_otaq	17	18	MUX_A3
GND	19	20	MUX_A2
SR_reset	21	22	MUX_A1
hold	23	24	MUX_A0
spare3	25	28	Ramfullext
SR_IN	27	28	Reset_BCID
spare4	29	30	GND
SR_OUT	31	32	Resetn
spare5	33	34	Start_Conv_daqb
SR_ck	35	36	End_Readout
GND	37	38	Start_acq
TransmitOn_3	39	40	RamFull
Pwr_analog TransmitOn_2	41	42	Dout_3
TransmitOn_2	43	44	GND
Pwr_dac	45	48	Dout_2
Pwr_ss/Pwr_sca	47	48	Start_Readout
GND	49	50	Trig_ext
TransmitOn_1	51	52	Start_Readout_Bypass
Pwr_digital	53	54	Dout_1
TransmitOn_0	55	56	GND
Pwr_adc	57	58	Dout_0
SC SROUT	59	60	SC_SRIN_BYPASS
SC_SROUT_BYPASS	61	62	SC_SRIN
SU_s elect	63	64	SU_reset
SC_ck	65	66	SC_load
User_LVDS_P	67	68	User_LVDS_N
Trig_Ext_P	69	70	Trig_Ext_N
DVDD	71	72	AVDD
Clk_5MHz_0_P	73	74	Clk_5MHz_0_N
Clk_5MHz_1_P	75	76	Clk_5MHz_1_N
GND	77	78	GND
Clk_40MHz_0_P	79	80	Clk_40MHz_0_N
Clk_40MHz_1_P	81	82	Clk_40MHz_1_N
DVDD	83	84	AVDD
Raz_Chn_P	85	86	Raz_Chn_N
Val_Evt_P	87	88	Val_Evt_N
AVDD	89	90	AVDD

=> The DHCAL DIF can also be used for ECAL or AHCAL ...



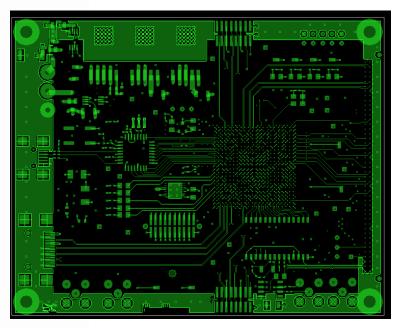
Samtec FSH/ SFMH 90 pin connector



The DHCAL M2 Architecture

5

Design of a 1m² MicroMegas

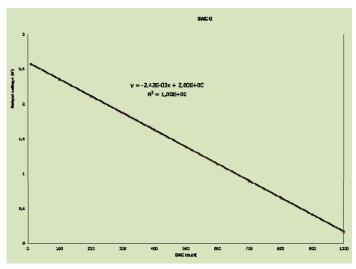


Status of the DHCAL prototype

- Sent to production on April 29 th.
- 10 PCB are manufactured.
- Cabling in progress.
- Boards awaited next week.

Mechanical and Electrical Characteristics

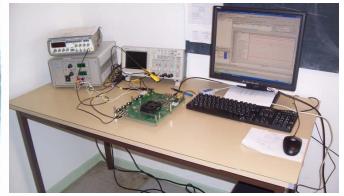
DIF Top View


- 8 cm *10 cm *1.5 mm
- 10 layers
 - 4 signal layers
 - Controlled impedance
 - Classe 6 (0.12 mm wire)

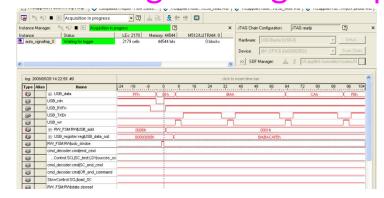
Many thanks to Sébastien Cap for the CAD.

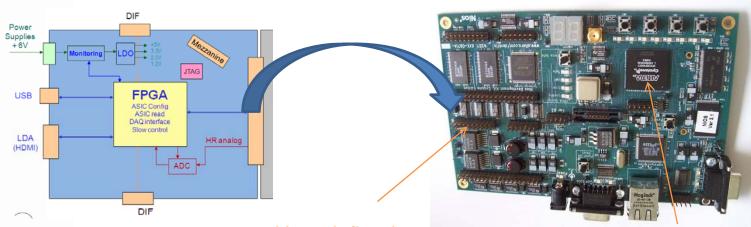
Firmware Status

- USB interface OK
 - R/W registers, commands, ...
- Slow control OK
 - HardRoc configuration
 - Return signal (SC_q) check
- Acquisition and Digital Readout : to be tested (TBT)
- Analog readout: TBT
- Monitoring TBT
- LDA interface : to be dvlped


DAC output (V)- f (SC DAC value)

- Software is developed by Christophe Combaret (IPN Lyon).
 See his talk
- •Congratulations to Guillaume Vouters for the main VHDL part.


FW validation on the HR test board


LAL HardRoc test board

- 1 HR + Cyclone FPGA.
- 12 bits ADC for the analog RO.
- Possibility of charge injection.
- USB interface.
- FW debug with signal tap

Validation of the DHCAL DIF

- No ASU available with HR before?
- Emulation of HardRocs using an Altera evaluation kit.
 - Fit the HR VHDL (digital part) in the FPGA.
 - User defined IO connector to interface with the DIF.
- => Will allow validation of the DIF and FW for N HR

User defined connector

FPGA to emulate HardRocs

Conclusion

- DHCAL DIF will be back from production next week.
- Firmware and corresponding software (Lyon) are in progress.
 - Debug on the HardRoc test board (1 HR).
- Before ASU reception, the DIF will be tested using an Altera evaluation kit to emulate HardRocs.
- => Necessity to have a validated and reliable DIF for the November test beam.

