

### ILC Positron Source Collaboration Meeting (7-9 April 2008)

Sabine Riemann (DESY) 23 May 2008

http://indico.desy.de/conferenceDisplay.py?confld=586

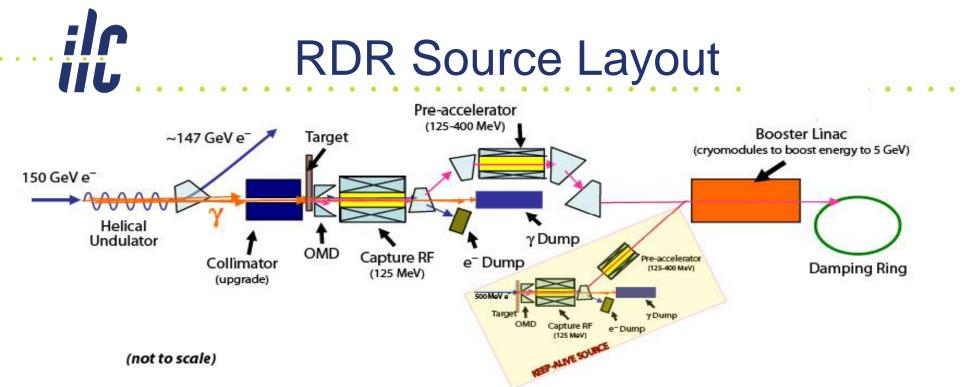
# Purpose of the April Meeting

- Review studies since the last meeting (Sept 07)
- Assess R&D requirements for whole of positron source
  - Generate prioritised list
  - Take account of reduced resource level when estimating timescales
- Assess possible cost reduction measures
- Discuss new work breakdown structure
- Topics
  - Collimation
  - Undulator
  - Compton Source
  - Target
  - Polarisation
  - Remote Handling
  - Source Modelling
  - OMD

### The RDR Parameters

Nominal Positron Source parameters († upgrade values).

| Beam Parameters                        | $\mathbf{Symbol}$   | Value                  | Units       |
|----------------------------------------|---------------------|------------------------|-------------|
| Positrons per bunch at IP              | $n_b$               | $2 \times 10^{10}$     | number      |
| Bunches per pulse                      | $N_b$               | 2625                   | number      |
| Pulse repetition rate                  | $f_{rep}$           | 5                      | Hz          |
| Positron energy (DR injection)         | $E_0$               | 5                      | ${\rm GeV}$ |
| DR transverse acceptance               | $\gamma(A_x + A_y)$ | 0.09                   | m-rad       |
| DR energy acceptance                   | δ                   | $\pm 0.5$              | %           |
| DR longitudinal acceptance             | $A_l$               | $\pm 3.4 	imes \pm 25$ | cm-MeV      |
| Electron drive beam energy             | $E_e$               | 150                    | GeV         |
| Electron beam energy loss in undulator | $\Delta E_e$        | 3.01                   | GeV         |
| Positron polarization $^{\dagger}$     | Р                   | $\sim 60$              | %           |


Positron overhead of 50% after the target

→ 3 x 10<sup>10</sup> e<sup>+</sup> per bunch at 400 MeV

Positron overhead of 25% at the Damping Ring

 $\rightarrow$  2.5 x 10<sup>10</sup> e<sup>+</sup> per bunch within the DR acceptance

23 May 2008



- Photon beam generated in helical superconducting undulator at 150 GeV
- Photon beam transported ~400m beyond undulator and then impinges on Ti alloy target (0.4 rad lengths, 1.4cm)
- Positrons captured with optical matching device and accelerated with NCRF Linac with solenoidal focussing to 125 MeV
- Any electrons and remaining photons are then separated
- Positrons further accelerated with NCRF Linac with solenoidal focussing to 400 MeV
- Transported at 400 MeV for ~5km
- Accelerated to 5GeV in SCRF Linac and injected into DR

23 May 2008



#### Collimation

Low-power photon-collimators in the undulator lattice

- current work is based on collimator specifications previously calculated by O. Malyshev et al in 2006 (see EUROTeV Report 2006-086):
  - maintain a vacuum at the level of 10<sup>-7</sup> T by preventing photodesorption of cyrosorbed hydrogen from the inner surface of the undulator beampipe.
- Now: building the collimator geometry into Geant4 and interfacing to the helical undulator photon distributions.
- study depends on realistic simulation of photons emitted at wide angles from the central beam-axis.
  - optimise geometry and materials.
  - Report expected in June for EPAC



#### **High-power photon collimator**

- sits directly upstream of the photon production target and is intended to
  - scrape the beam to protect instrumentation, etc in the target station and
  - adjust the polarisation of the beam.

in that (upgrade) case the power load on the target may be up to 100kW.  $\rightarrow$  realistic undulator photon spectra are important as the polarisation of the photon beam is a function of angle.

- Initial studies with collimator geometry in FLUKA
- Now: also aspects of the undulator spectra
  - collimator energy deposition, heat load, activation etc.
- Report expected in June 08 for EPAC

#### Undulator

- 42 x 4m cryomodules (42 x 3.5 = 147m active length)
- Vacuum pumps, photon collimators, quads, BPMs installed every 3 cryomodules in room temp sections
- Corrector magnets in every cryomodule

| Undulator Parameters                             | Symbol       | Value   | Units                  |
|--------------------------------------------------|--------------|---------|------------------------|
| Undulator period                                 | λ            | 1.15    | $^{\mathrm{cm}}$       |
| Undulator strength                               | Κ            | 0.92    |                        |
| Undulator type                                   |              | helical |                        |
| Active undulator length                          | $L_u$        | 147     | m                      |
| Field on axis                                    | В            | 0.86    | Т                      |
| Beam aperture                                    |              | 5.85    | $\mathbf{m}\mathbf{m}$ |
| Photon energy $(1^{st} \text{ harmonic cutoff})$ | $E_{c10}$    | 10.06   | MeV                    |
| Photon beam power                                | $P_{\gamma}$ | 131     | kW                     |

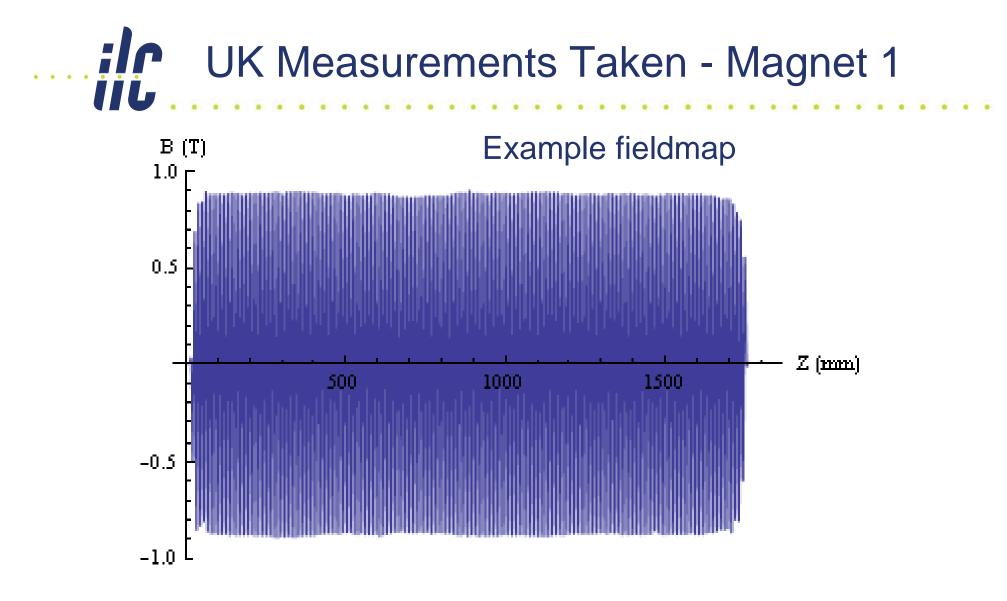
23 May 2008

İİL

Summary of Positron Source Coll. Meeting

### Undulator Session Summary (UK)

UK group (Daresbury and Rutherford):

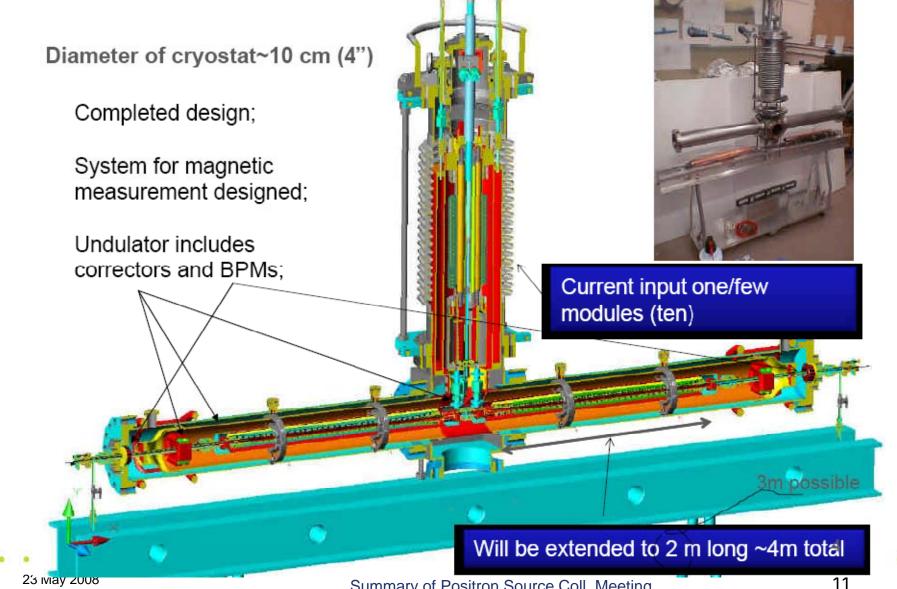

- Several short prototypes were tested
- STFC are building a full scale 4m undulator module
  - 2 x 1.75m undulators
    - both have been manufactured
    - the first has finished vertical test
  - RDR parameters
  - now focus on design, manufacture and testing of 4m cryomodule
- Very good test results:
  - magnet reached full design field (0.86T) without quenching
  - Quench tests at high current → stable operation at ~1.1T
  - complete cryomodule is expected by end June 08

#### UK Vac Vessel, Turret, Und II

ilr

٠

# All (nearly) the team at RAL 23




Measured period (from field zero crossing points): 11.48 +/- 0.02mm peak field at the nominal current of 215A: 0.88 +/- 0.014T.

23 May 2008

Summary of Positron Source Coll. Meeting





Summary of Positron Source Coll. Meeting

### Undulator Session Summary (Cornell)

- Cornell undulators have achieved
  - K=1.48 for a period of 13.5mm (measured) and
  - K=0.7 for a period of 10mm (simulated), both with a winding bore of 6.35mm.
- A full scale cryomodule design has been generated with a cryostat diameter of only 10cm.
- Long (2 to 3m) formers have been manufactured by industry.
- Pumping of the LHe has been tested (to lower the temperature) and been shown to give a field increase of ~10%.
- Unfortunately all ILC positron source activities are presently stopped at Cornell.

# Undulator Session Summary

Outstanding issues for the undulator include:

- undulator beam test will be essential at some stage.
- horizontal magnet field tests are also essential at some stage.
- cryomodules need to be engineered for industrial production and long term operation.
- The intermodule sections need to be engineered (both room temperature sections and cold to cold transitions).
- Simulations:
  - "Real" Undulator spectrums required for modelling of source
  - magnet field data should be used as basis for generating realistic spectral data to be used in future source simulations
  - Alignment requirements justified/jitter studies/impact on polarisation

### Compton Source Session Summary

R&D on 2 and 4 mirror cavity systems (reported by A. Variola).

- 2 mirror system achieved finesse of ~1200, new mirrors are needed for  $10^4 10^5$ , and this has been installed in ATF.
- Some problems have been encountered trying to establish feedback loops and a good laser match.
- A 4 mirror system is more stable when trying to achieve smaller spot sizes → this is also being worked on and will be installed into ATF later.

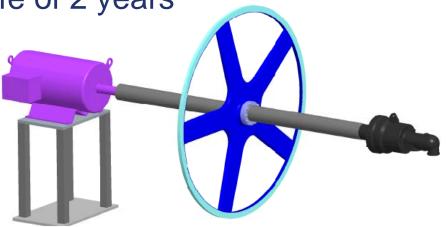
Damping ring stacking studies (F. Zimmermann and A. Vivoli).

- Initially large (76%) injection losses were found when using similar assumptions as used previously for Snowmass 2005 simulations.
- these losses seem to be reduced sigificantly (down to 11%) by
  - Improving the energy pre-compression,
  - additional damping wigglers and
  - more installed RF voltage
- There are many other possible options to be tried, including a predamping ring.

# Compton Source Session Summary (cont.)

Linac based compton source with CO<sub>2</sub> regenerative amplifier laser system. (Yakimenko)

- Modelling of the short pulses in an isotopic gas mixture has started.
- Injection into a regenerative amplifier using germanium is planned to start soon.


Outstanding issues:

- Continue DR stacking studies and work with DR group to ensure optimum solution.
- Continue cavity stability tests at LAL and KEK.
- Laser demonstration needed.
- ATF experimental work to continue.
- 2010 demo of high gamma flux at ATF.



### Target

- 1m diameter spinning wheel
- Rim & spokes not solid disk to mitigate eddy current effects
- Designed for operational life of 2 years



| Target Parameters            | Symbol     | Value       | Units     |
|------------------------------|------------|-------------|-----------|
| Target material              |            | Ti-6%Al-4%V |           |
| Target thickness             | $L_t$      | 0.4 / 1.4   | r.l. / cm |
| Target power adsorption      |            | 8           | %         |
| Incident spot size on target | $\sigma_i$ | > 1.7       | mm, rms   |

23 May 2008



#### Prototype I - eddy current and mechanical stability





#### **UK Prototype**





- Complete Eddy current tests at Daresbury
- Generate simulations to compare with experimental results
- Pressure shock wave analysis and numerical modelling
  - Simulations of the pressure shock waves using hydrodynamic modelling at Cornell suggests the Ti target would not survive.
  - Further simulation will be carried out to verify this. The validity of the quasi-classical approximations used will be checked as well as the theoretical description of the beam intensity / polarisation and the implications of using an imperfect undulator.
  - Alternative liquid metal (BINP/KEK tests)
- Guarding thickness verification (LLNL)
- Ensure consistency between ANL/DESY simulations
  - Energy compression before DR
- Lifetime studies of target (LLNL)
- Engineered solution, including prototype tests water, vacuum,

. . .

#### **Polarization**

RDR design (but not baseline!!)  $\rightarrow$  positrons will be polarized (~30%)

- With energy compression positron polarization could reach 45%
- Requirements of baseline documents can be fulfilled by destroying the polarisation completely → scheme will be worked out
- In any case measurement of e+ polarization at IP
- If e+ polarisation is kept
  - $\rightarrow$  helicity reversal is needed
  - → spin rotation (Optimise spin rotator design working at 400MeV instead of 5 GeV).
- frequency of the helicity flip:
  - depends on the time stability of luminosity and polarization
  - first years of running: helicity reversal after hours might be sufficient
  - But: to be superior to LHC results, helicity flip with sufficiently high frequency should be possible
  - ➔ evaluate consequences of 'slow' reversal

#### Tools for design and performance studies: Geant4 with polarization

- Maintenance and validation of Geant4 with polarization.
- Comparison of yield and polarization results with other codes.



#### **Polarization**

#### **Polarimetry at low energies**

#### - Bhabha polarimeter at 400 MeV suggested

- Optimization of polarimeter layout including spectrometer magnet and detector.
- Further work for a reliable target design.
- Compton polarimeter after DR, before ML
  - save costs using the laser of the laser wire system
  - realistic performance study
  - to be done in collaboration with laser wire group

#### **Polarization modelling**

- All depolarization effects have to be accurately calculated
- precise spin tracking is required already for the baseline design.
- This work has to be done for the electrons as well as the positrons.
- →
- Theoretical studies to describe spin precession in strong fields.
- Inclusion of second order depolarization processes

23 May 2008

#### ilc iic

#### **Remote Handling**

- Needed for target, OMD, NCRF linacs
- Change over time for target ~ 2days
- Also needed for KAS Target



### **Remote Handling**

No progress since last meeting on the RH design itself (same as in RDR)

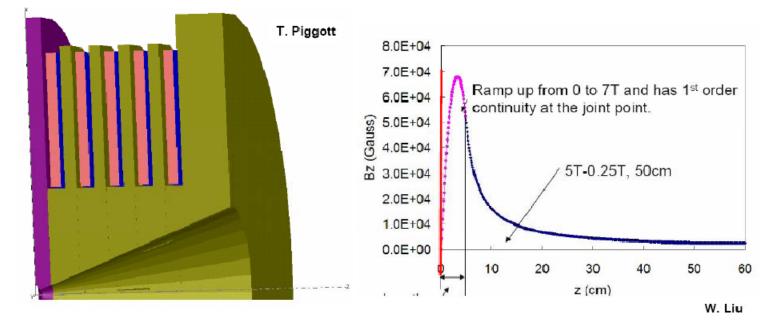
- RAL has staff effort available after Summer '08, but no funding; ORNL have no funding.
- No plans to address remote-handling activities in Japan, although the alternative source (Keep-alive source) will also require remotehandling.
- ➔ It would be useful to see estimated activation numbers for the alternative source.

Ongoing activities:

- Activation simulations continue to be refined.
- Latest results (increase of capture efficiency by energy compression):
  - Possibly reduced undulator-length
  - dropping the equivalent dose rate from the target wheel to 250 (90) mSv / hour after 1 hour (1 week) of shutdown.
  - Depending on required time for changeover it may be possible to eliminate some elements of the remote-handling

# Remote Handling (contd.)

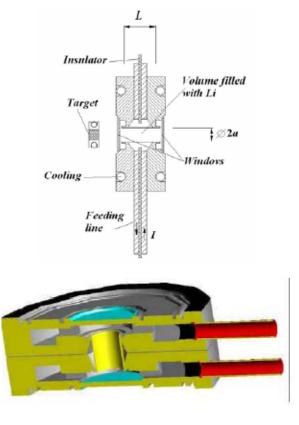
- Ongoing work and questions
  - Preliminary use of detailed target model in FLUKA
  - Collimator in RH
  - Activation of water
  - Shielding thickness around target etc
  - RH scenarios refined
    - Changeover times (requirement ties in with lifetime of kit in RH)
    - Replacement of pillow seals?
    - RH for auxiliary source (KEKB?)
  - Need engineered design compatible with source layout (remove inconsistencies!)


### Source Modelling

- Emittance evolution of the electron beam through the undulator has been studied by ANL.
  - code Elegant

- Without energy spread emittance decreased by ~1% in both planes.
- With energy spread change was still at the % level but showed an increase in the vertical plane for 300m long undulator,
- ANL group has also started to look at Quad-BPM misalignments in the undulator section.
- Geant4 now includes polarisation processes and can also handle particle motion in electric and magnetic fields.
  - polarisation results have been well tested as part of the E166 analysis.
  - undulator source (target & capture sections) have been modeled and should be benchmarked against other codes.
- Outstanding issues that were raised include:
  - Write-up of undulator emittance effect
  - Benchmark G4 polarisation/yield against other codes
  - Study activation of linac after target, copper vs aluminium
  - Re-evaluate undulator K if target/OMD changes
  - Ongoing yield/polarisation evaluation with source design evolution

### Optical Matching Device


- Increases capture efficiency from 10% to as high as 40%
  - Depends on scheme selected
- Flux Concentrator



- Reduces magnetic field at the target
  - Reduced capture efficiency, 21%
- · Pulsed flux concentrator used for SLC positron target
  - It is a large extrapolation from SLC to ILC
  - 1µs -> 1ms pulse length

23 May 2008

### OMD, Lithium Lens Proposed by Cornell, up to 40% capture



Mikhailichenko CBN 08-1

- Most mature OMD design we have
- Some engineering questions related to survivability:
  - What is the radiation damage in the windows from photo-nuclear reactions?
  - What is the stress-strain in the windows from heating?
  - Does thermal cycling cause fatigue?
  - Is there cavitation in the liquid metal?
    - · If yes, will this erode the windows?



#### **OMD** Summary

- Li Lens
  - Evaluate level of radiation damage in window & implications for lifetime
  - Stress-strain in window
  - Thermal cycling fatigue
  - Cavitation wear on windows
  - Proton beam tests?
  - Contact experienced Li lens experts to discuss this idea
  - KEKB BN window tests (liquid lead target)
- Flux Concentrator
  - Need feasible design

(The pulsed flux concentrator is an extrapolation from a device used for a hyperon experiment and requires a serious engineering effort before its viability can be evaluated.)

# Keep Alive Source (KAS)

- RDR: KAS is incorporated into the design
  - KAS uses 500 MeV electron drive beam which impinges on W-Re target
  - Positrons from KAS are accelerated to 400 MeV and then share common SCRF Linac to reach 5 GeV
  - KAS designed to generate 10% bunch intensity for full bunch train (2625 bunches) at 5Hz

→ Remove keep alive source, auxiliary source only

# Cost Issues

- Re-establish RDR "Baseline" Cost
- Change undulator location to end of main linac
- Change underlying assumption of yield of 1.5 e<sup>+</sup> in DR for every e<sup>-</sup> in undulator
- Reduction of DR acceptance allowed discuss with DR experts
- Reduce undulator chicane offset from 2.5m to <1m
  - Use dog-leg instead (linacs no longer coaxial)
  - Use 3 bump insert
- Maximise e<sup>+</sup> polarisation to increase effective luminosity, enabling scaling back of ILC parameters
- Remove keep alive source, auxiliary source only
- Maximise yield (eg Li lens, energy acceptance)

#### **Critical R&D**

- Priority 1 major impact on feasibility/performance
  - Target

- OMD (Li lens & Flux Concentrator)
- Remote Handling design
- SW NC Linac
- Priority 2 Necessary but not expected to be critical
  - High power photon collimator design
  - Undulator beam tests
  - SCRF Linac designs
- Alternative Compton Source
  - Stacking, cavity stability, laser, ATF demo, ...
- Our new motto from this week
  - "Maximise the yield, minimise the cost"