AHCal-Specific Code

Current status of reconstruction and digitization

Niels Meyer, DESY CALICE Meeting, Manchester September 9, 2008

Processors

Knows about single SiPM measurements from ITEP, including response curve

Knows about calibration constants

Use calib consts and response curves to calibrate/correct raw data or digitized MC

Use calib consts and response curves to digitize simulations

Response Curves

Data demand possibility to scale response curves

SiPMPropertiesProcessor offers flexibility to

- · Global scaling factor
- · Channel-by-channel factors (LCCollection of SimpleValue objects)
- · Combination of both

Missing: replacement of ITEP data with alternative response curves

Calibration Constants

AHcal properties are temperature dependent, strategy is to scale calibration constants (gain [ADC/pix] and MIP [ADC/m.i.p])

Correlated effect, most simple way to realize is global factor to all calibration constants (available in IntegratedHcalProcessor)

Still under development:

- Individual scaling factors
- More sophisticated: temperatire from data stream, calculate individual scaling factor from measured temperature slopes

Digitization / Reconstruction

Digitization output equivalent to (and same format as) raw data

Effects simulated:

- · Signal leakage to neighbouring tiles (global factor only)
- Non-linear response (response curves and calib constants)
- Pixel statistics
- Energy scale (calib constants)
- Dead/uncalibrated channels

Effects reconstructed/corrected:

· Non-linearity

Still not possible at the moment:

- Channel-to-channel smearing of calib constants (to get resolution correct in simulation)
- Correction of known and simulated effects (signal cross talk, excluded cells)