Exploring Source Based Energy Calibration Strategies and Modelling of Electro-Magnetic Interactions

> Graham W. Wilson, University of Kansas with David File, Brian van Doren (grad. students)

CALICE Meeting, Manchester, September 2008

Calibration strategy ?

- Typical detector designs have MANY cells.
- Essential physics calibration is ADC → deposited energy for scintillator and/or Silicon.
- In the Si-PM era, pe → ADC calibration is straightforward (modulo saturation).
- In thin active media, like ECAL Scintillator, calibration with sources may be an attractive, high statistics way to deal with non-uniformities, saturation, material thickness etc.
 - Current thinking is centered on procedures which could certainly be carried out during production, and maybe also in situ. (especially if push/pull is realized !)
 - Following plots are data with a conventional PMT setup (self-triggered) aimed at commissioning ability in a well defined setup before going on to applying to technologies suitable for ILC such as thin tiles.
 - Can check low energy EM interaction detector response simulation.

Bi-207. 1047 keV e-. 2.5mm Scint.

fraction

ECAL Energy resolution

Need threshold well below 1 MIP level in order to approach asymptotic resolution.

Value depends on transverse segmentation.

Shower Age Corrections

- EM calorimeters with good longitudinal segmentation can be used to correct for the e/MIP response variations with shower age.
 - (more and more of an electron's energy is deposited in the passive (high Z) material as the shower ages and the average shower particle energy decreases)
 - e/MIP can easily be 0.6 or so for Pb/Scint deep in a shower.
 - Since these effects are relatively big, it may also be important to check directly the electron and MIP response of the scintillator.
 - The scintillator response presumably becomes more Compton dominated with shower age.

Developing Lab

• Aims:

- Develop in-situ ability to appreciate technical feasibility of different approaches.
- Test single planes of detectors well before going to test-beam.
- Test simulation of particle interactions with matter with available tools.
- Train and motivate students in research, particularly detectors, DAQ and electronics.

Lab Measurements with Sources and Cosmics

Exploring Calibration Strategies

Bi-207 with Al mylar window: internal conversion electrons.

All plots are data with 5mm BC-408 scintillator.

Absorption peak $\sigma_E/E = 5.5\%$. (intrinsic splitting: 3.3%). Energy scale stat. error of < 0.01% !

Energy loss in upstream material, leads to the 482 keV e⁻ peak overlapping with 570 keV Compton edge (393 keV)

Cs-137

 $\gamma: 662 \ keV(85.1\%)$ $e^{-}: 624(7.7\%), 656(1.4\%)$

 β_1^{-} 514 keV endpoint (94.4%) β_2^{-} 1176 keV endpoint (5.6%)

Procedure

- Collect real data (usually 100k events in about 15 minutes) D. File
- GEANT4 Detector Model
 - Geant4.9.1.p02
 - 5cm source detector distance.
 - Full 3-d geometry model.
- Generate electrons and gammas according to nuclear data-sheets
- Find predicted energy deposition in scintillator.
- Fit binned real data using χ^2 approach allowing for:
 - Pedestal (measured with pulser events)
 - Normalization factor
 - Energy scale (ADC counts per MeV deposited energy)
 - Energy Resolution
 - Optional Gamma to Electron Multiplicative Factor
- Ideogram method is used to smooth MC.

B. Van Doren

Bi-207

No absorber (mostly 976 keV conversion electrons)

 $\chi^2/dof=134/97$

Not a perfect fit, but not too bad. Needed to include the gamma/e fudge factor dof to fit the data below the electron peak. Deficit of electrons or excess of gammas ? Norm

Cs-137

No absorber (mostly 624 keV conversion *electrons*)

 $\chi^2/dof = 174/98$

Fit not very good above the electron peak. Perhaps in this case the na gamma to electron restd factor needs to be used too to allow for a smaller resolution value. Normal

7ed

Fitted Histogram for Cs-137 no absorber

Bi-207

With absorber (6mm LDPE)

(Compton edge of 1074 keV gamma)

 $\chi^2/dof=107/98$

Fit is pretty good !

Cs-137

With absorber (6mm LDPE)

(Compton edge of 662 keV gamma)

 $\chi^2/dof=116/98$

Fit is pretty good !

Bi-207

With absorber (6mm LDPE) (Compton

edge of 570 keV gamma)

 $\chi^2/dof=187/98$

Not so good, and quite different purported energy scale.

Bi-207

No absorber

(Compton edge of 570 keV gamma + its CEs)

 $\chi^2/dof = 418/97$

Normalized residual/ 1/2

Not so hot !

Energy Scale Estimates (reasonable fits only)

- 1856 ± 1 ADC counts / MeV (Bi-207 976 keV e⁻)
- 1841 ± 5 " (Bi-207 1064 keV γ Compton edge)
- 1875 ± 3 " (Cs-137 662 keV γ Compton edge)

Energy scale estimates consistent to within about 1-2% level with different techniques over a relatively small energy range.

Compton edges tend to give broader resolution.

Potential Systematic Errors

Lots of things to get right at the <1% level ...

• Material description

- Upstream material
 - Need at least two reliable electron measurements for data-based control of this.
- Surrounding material
- Source geometry
- Geant4 interaction model
 - Need low energy EM ?
 - Broadening of Compton edge?
 - Scintillator saturation (Birks) necessary for electrons ?
 - Is multiple Coulomb scattering OK ?
- Nuclear modelling
 - True coincidence summing effects
 - Auger electrons, X-rays

- Noise
- Random coincidence
- ADC linearity (< 0.5%)
- Scintillator / Light collection efficiency vs scintillator depth
- Resolution model (constant term, noise)

Planned Improvements

- Less upstream material (should make it easier to resolve electrons and gammas in no absorber data)
 - Also minimize environmental material
- Some collimation
- Test homogeneity with position scans
- Integrate LED pulser for in-situ ADC/pe calibration
- Investigate Compton coincidence technique with NaI trigger on back-scattered Compton gamma
- Apply to new photo-detectors
- Apply to scintillating fibers
- Extend to other sources.

Conclusions

- Initial results are promising.
- Obtaining precision results needs care.
- 1 MeV electron test-beam is potentially very powerful
 → need excellent control of material as expected
- Compton-edge calibration technique looks very encouraging.
- Need to sort out some systematic effects / improve experimental setup before combined fitting of different data-sets makes sense.

Backup Slides

Co-57 ($t_{1/2}$ =272 d)

interesting.

10

10

100

200

ADC counts (0.2pC/count)

Full-energy peak corresponding to 0.1 MIP. Lower energies (eg. Am-241, 60 keV) with higher full-energy efficiency could be

Check response to various EM particles

Relativistic electrons

Positrons and gammas

Scintillating Fiber Decay Time Measurement

Designed with Don Claus (UG student)

Trigger electrons with t PMT measure $\Delta T = t_{fPMT} - t_{tPMT}$

BCF-12 fiber (
$$\tau = 3.5ns$$
)

