

Status of DCC

CALICE WEEK University of Manchester September 9, 2008

Franck Gastaldi @ LLR Polytechnique

Goal of DCC

• Main specification:

• Reduce the number of LDA and ODR for the DHCAL Remember :

3 Difs/layer (40 Layers)

10 Difs/LDA => 12 LDA and 3 ODR

With DCC, we have need of:
9 DIFs/DCC => 14 DCC => 2 LDA and 1 ODR

Team DCC at LLR :

Vincent Boudry, Antoine Mathieu, Franck Gastaldi

Fluxes

	N DIF/LDA	N DIF/DCC	ASIC Dclk	ASIC FLUX	LDA-DIF Dclk	LDA-DIF FLUX	LDA Dclk	LDA FLUX	1
			[MHz]	[MB/s]	[MHz]	[MB/s]	[MHz]	[MB/s]	
	10	9	10	1.25	80	10	1000	125	
Detector	DHCAI		Evt Size	Mem Size					-
			20 B	128			B = Byte		
Mode	Calib/Noise	Calib/noise	TR	TR	Demo				
Mode	Single	Burst	Single	Burst	Demo				
N ASIC/DIF	48	48	18	18	18				-
ASIC	20 B	2 560 B	20 B	2 560 B	2 560 B				
R/O time 1	16 µs	2 048 µs	16 µs	2 048 µs	2 048 µs				1
R/O time ALL	768 µs	98 304 µs	288 µs	36 864 µs	36 864 µs				
DIF	960 B	122 880 B	360 B	46 080 B	46 080 B				
R/O time	96 µs	12 288 µs	36 µs	4 608 μs	4 608 µs]
	0.600 D	1000 000 D	2 600 D	460.900 B	460.900 D	~ w/	o DCC	the I	DA
LDA W/O DCC	9 600 B	1220 000 B	3 600 B	400 800 B	400 800 B			,	
R/O lime	// µs	9 830 µs	29 µs	3 080 µs	3 080 µs	<u> </u>) time	is clos	e to
DCC	8 640 B	1105 920 B	3 240 B	414 720 B	414 720 B	וח	E r/o t	imo	1
R/O time	864 µs	110 592 µs	324 μs	41 472 μs	41 472 μs		170 t	iiiie	
LDA w/ DCC	86 400 B	11059 200 B	32 400 B	4147 200 B	4147 200 B				
R/O time	691 µs	88 474 μs	259 µs	33 178 μs	33 178 μs				
Max R/O time	864 // 5	110 592 //s	324 // 5	<u>41 472 us</u>	<i>41 472 us</i>				
Max Freq	1.16 kHz	0.01 kHz	3.09 kHz	0.02 kHz	0.02 kHz				
Max evts Freq		1.16 kHz		3.09 kHz	3.09 kHz				

<u>*Remark*</u> : With a DCC, the flux between DIF and LDA is optimized and the cost will be moderate

Overview of DCC

Overview of DCC blocs (Data side)

Overview of DCC blocs (CMD, CLK, Trig)

Status

POLYTECHNIOUE

• Prototype 0 before the DCC board

- Read 4 DIFs
- Implementation and tests of the VHDL code
- Designed from a XILINX evaluation board with a 128 Mbits SRAM and daughter board to the HDMI, USB connection

• Where are we?

- The daughter board is fabricated
- We work on each VHDL code blocs (Memory controller, buffer, and others.....)
- We re-use all LDA modules (Marc) and USB module (Clement)

Picture on XILINX evb and daughter board

September 9, 2008

CALICE Week @ Manchester

Planning (estimation)

o Until end of 2008

- Start of DCC schematic and first layout
- Define the optimum memory component
- FPGA will be a Spartan-3
- o January April 2009
 - Fabrication of DCC prototype
 - Setting up tests bench
 - Tests and validation of VHDL code
- o June July 2009
 - If all work, start of production
 - Remark: the time of production will depend on availability of some components