

ECAL slab Cooling & Mechanics for End-Cap

CALICE meeting – Manchester

Denis Grondin (<u>grondin@lpsc.in2p3.fr</u>) Julien Giraud (<u>giraud@lpsc.in2p3.fr</u>) André Béteille (<u>beteille@lpsc.in2p3.fr</u>)

Denis Grondin / Julien Giraud - 09/09/2008

Cooling: global circulation (2)

Power results :

2 FPGA per SLAB, power: 3 W each, then : 3 x 2 = 6 W SKIROC : 0.54 W / slab **Barrel :** Global Power : 19484 W Power per module : 487 W Power per column : 97.4 W **End Cap :** Power per End Cap : 5060 W Average power per module : 420 W (390+390+480)/3 Average power moyenne per column : 97 W

Global Power: 30 000 W

Rough estimate on fluid circulation:

Global flow rate : 150 l/min

Variation of fluid temperature : in-out => 3°c

Fluid speed < 2 m/s

Maximal pressure drop : 1.2 bar

Fluid circulation / mounting

Fluid circulation => passages for pipes toward exterior of detector => free space to find and to adapt:

- Passage for pipes and cables under rails (machining on composite surface)
- Connection of pipes according mounting procedure for modules

Passage through the rails

for both pipes and cables

SLAB COOLING – CONSTRAINTS

External cooling design

Design : each cooling system ● is inserted and screwed to each column of slab with a thread rod and spacers (②) and connected to the cooling network in a second step ⑤.

SLAB COOLING - EUDET

SLAB COOLING - EUDET

SLAB COOLING - EUDET

Thermal analysis of slab

Simulation of heat conduction just by the heat copper shield : Influence of the FPGA dissipation (DIF) on current design of cooling system (Limit Condition of 20°C, with Main plate : 0.3 mm; Upper plate : 0.1 mm; L = 1,55 m; Copper layer : λ = 400 W/m/K)

SLAB COOLING

Slab cooling tests (1 Hot ASU + 8 thermal ASU):

- Correlation with simulations (transfer coefficients, contacts ...)
- Check a thermal dissipation behaviour close to EUDET design
- Validate the cooling system (400 µm copper plate + pipes)

... taking into account thermal analysis of slab...

Cooling setup

Design of copper foils

The expected heat shield thickness is 500 µm=100+400 µm:

 \Rightarrow Brazing of copper foils (T<300°C) to be validated

Heat shield : 100 (housing AI or CuBe?) + 300 or 400 μ m Cu = 4 options for copper assembling to test:

Options 1

 100μm housing Cu.. + 400 μm Cu (without brazing – with holes) / 0.4 mm considered for simulation. Thermal grease only in holes (1.8x1.8 cm² chips*400 μm thick).

Options 2

100μm housing Cu.. + 400 μm Cu + 0.05 (silver brazed) /
 0.5 mm considered for simulation. Thermal grease only in holes (1.8x1.8 cm² chips*400 μm thick).

<u>Options 3</u>

100μm housing Cu.. + 300 μm Cu + 0.05 (silver brazed) /
 0.4 mm considered for simulation. Thermal grease only in holes (1.8x1.8 cm² chips*300 μm thick).

<u>Options 4</u>

 100µm housing Cu.. + 400 µm Cu (whithout brazing) / 0.4 mm considered for simulation. No holes (1.8x1.8 cm²), chip no overlapping.

Simulations to be performed on the final option for demonstrator.

Actually done with 100µm housing Al + 300 µm Cu with holes and grease (0.4 mm considered for simulation)

For simulation : the 100 μm housing Cu do not cover the ADAPTER et DIF cards.

The copper drain is adapted / DIF card to be in contact with FPGA on DIF (« hot » Kapton for demonstrator)

Design of module ...

... based on mechanical simulations : <u>Linear Analysis of "full scale" ECAL modules (barrel</u> <u>and End-caps)</u> OK

- Global simulations : global displacements and localization of high stress zone for different solutions (dimensions)
- Local simulations : more precise simulations and study of different local parameters to design correctly each part of this structure (thickness of main composite sheets, fastener's behaviour...)
- Check and validate simulation results by destructive tests for each issues

End-Cap module **Configuration 90°**

Fastening & cooling system

•<u>Choice of fasteners</u> : aluminum rails screwed through the medium of inserts. Non magnetic (B=4T !)

Rail

•

Uniform dispatch of 18 inserts on the 15mm thick plate

A column (cooling pipe), (25 mm wide minimum) to ensure quick thermal system's connection

Cold copper bloc inserted between 2 copper plates of each slab

15mm thick plate with it's rails; ready to be assembled with alveoli layers

Fastening system (inserts)

Denis Grondin - CALICE meeting - Manchester - 09/09/2008

ECAL modules.

Copper plate

ECAL - End-Caps design (1)

Ð

Design: 1

- The same principle than barrel with an alveolar composite/ tungsten structure, with different shapes and different sizes (end of slabs)
- Difficulty: getting shape for W plates
- 12 modules-3 distinct types (780 cells & detectors slab) Configuration 0[•]

4

186

End-cap sector

ECAL - End-Caps design (2)

Design: 2

- Due to the possible crack in the geometry of design 1 the same general shape could be saved with different size and position of modules
- Instead of 12 modules from 3 distinct types: 8 super-modules from 2 distinct types
 Difficulties:
- Thermal (2.40m instead of 1.50m for longuest): T^o dangerously rising in back-end of slabs
 - Mechanical: >2.40m long thin alveoli maybe not feasible,

Cooling system: End-cap constraints

Ioad : 1/2 SLA	3													
FPGA power (one side of the SLAB)			0,3 W		anner thickness 10.4 mm EDCA newer 10.2 V									
SKIROC SLAB 1,5 m			0,27 W	\neg copper unickness : 0.4 mm, FPGA power : 0.								SA power : 0.3 v		
SKIROC SLAB 2,4 m			0,42 W											
			SLAB	: 1,5 n	1,5 m				SLAB	: 2,4 m				
FPGA	with			without			with			without				
Temperature (°c)	Tmin	Tmax	Difference	Tmin	Tmax	Difference	Tmin	Tmax	Difference	Tmin	Tmax	Difference	Comments	
Exhange coefficient inside pipe and fluid temperature of 20°c	20,2	29,1	8,9	20,1	28,1	7,9	20,3	40,0	19,7	20,2	38,8	18,6	Uniform copper thickness : 0,4 mm	
load : 1/2 SLAE	3					nor tl	امنه	1	~~ · (CA now or 1.2 M	
FPGA power (one side of the SLAB))		3 W	_	;op	peru	IICI	kne	55.0).4		I, FP	GA power: 5 W	
			SLAB	: 1,5 m	1			•	SLAB	: 2,4 m				
FPGA	with			without			with			without				
Temperature (°c)	Tmin	Tmax	Difference	Tmin	Tmax	Difference	Tmin	Tmax	Difference	Tmin	Tmax	Difference	Comments	
Exhange coefficient inside pipe and fluid temperature of 20°c	21,4	42,8	21,4	20,1	28,1	7,9	21,5	50,2	28,7	20,2	38,8	18,6	Uniform copper thickness : 0,4 mm	

Dem	nonstrator						
SIa ■	b cooling tests (1 Hot ASU + 8 thermal ASU): with all Cooling setup Correlation with simulations (transfer coefficients, contacts) Check a thermal dissipation behaviour close to EUDET design	Oct 08					
	Nov 08						
	Updated numerical simulations	Oct 08					
Goal: - Test of cooling system: mechanical aspect and performances - Optimization of simulation: conductivities, materials, geometries							
EUC	DET						
1	Cooling system for EUDET Alternative for 15mm thick composite plates, with rails integrated Alternative cooling sytem with heat pipes	Nov 08 Dec 08 Dec 08					
CAL •	LICE on going End-cap design & mechanical simulations Moulds for a specific End-cap module and optimization of composite el	ements					
•	Design for the whole detector cooling system Validation of the fastening system ECAL/HCAL						