CALICE Meeting September 2008

Analysis of pion showers in the ECAL from CERN Oct 2006/2007 Data – Status report –

Takuma Goto

University of Cambridge

Introduction

- How much can we learn about hadronic showers using the ECAL alone?
 - Few showers are confined in the ECAL. But many start in the ECAL, so it's important to understand showers in the ECAL as well as the HCAL.
 - ECAL offers good spatial resolution possibility to study properties of the primary interaction in some detail.
 - We do, by now, understand the behaviour of the ECAL data c.f. Monte Carlo, pretty well for electromagnetic processes.

Summary of data

Reconstructed data

Mokka version 6.3 p02 with physics lists...

• QGSP_BERT

Theory based quark-gluon string model with Bertini Cascade model

• LHEP

Commonly used parametrised model

• LCPhys

hybrid model, containing mainly models in QGSP_BERT and LHEP

Energy	Pion	2006	2007
8 GeV	_	run300663	run330641
30 GeV	+	run300696	run331298
80 GeV	+	run300694	run331324

Event Selection – Muon rejection

Low energy events are rejected to eliminate events which did not interact with ECAL (muons and non-interacting pions).

Event Selection – Electron rejection

30 GeV - data c.f. Monte Carlo

Before the Cut

After the Cut

Events with Cherenkov radiation, which are set to distinguish electrons from rest of the beam, are eliminated.

More Electron Events in low energy 2007 runs

E_{raw} Ecal /mips

Run300696 (30GeV) vs Simulations Total Energy Dissipated on ECAL

2000 4000 6000 8000 100001200014000

E_{ECAL} /MIPs

Run300696 (30GeV) vs Simulations Total Energy Dissipated on ECAL

LCPhys

LHEP

QGSC_LEAD

LHEP_BERT

FTFC Run300696_v0406 Entries 119 Mean 2 RMS 1 G4_300696_Mokka6.3.p02_F Entries 9

9000

8000

119640

2755

Before and after the radius-cut on 2006 and 2007 Data – Total Energy Deposited

E_{ECAL} /MIPs

E_{ECAL} /MIPs

20000 25000 35000 40000 E_{ECAL} /MIPs

Event Selection – cut on hit radius

Longitudinal Energy Distribution

8GeV -ve Pion

30GeV +ve Pion

80GeV +ve Pion

10

Run300696 vs Simulations Radial Energy Distribution

QGSP_BERT_HP

QGSP_EMV

QGSP_HP

Run300696 vs Simulations Radial Energy Distribution

QGSC_LEAD

LHEP BERT

r/mm

Radial Energy Distribution

8 GeV -ve Pion

30 GeV +ve Pion

80 GeV +ve Pion

Oscillatory behaviour in transverse distribution (at higher energy runs)

- Sinusoidal pattern with period 10mm
- Corresponds to size of 6x6 pads in a wafer
- 2007 runs have bigger amplitude

Possible Solution

2006 and 2007 Data – beam shape

30 GeV +ve pion

80 GeV +ve pion

First interaction layer – Algorithm

Aim : To test the cross-section for primary interaction

Identify the first layer which 3 layers out of 4 consecutive layers >10MIPs ¹⁷

First interaction layer

8 GeV -ve Pion

0.4

0.2

00

5

10

15

20

25

30

30 GeV +ve Pion

80 GeV +ve Pion

Run300696 vs Simulations Shower Energy – first 5 layers after interaction

QGSP

QGSP_BERT

QGSP_BERT_HP

QGSP_EMV

QGSP_HP

Run300696 vs Simulations Shower Energy – first 5 layers after interaction

LHEP_BERT

2007 vs 2006

Shower Energy – First 5 layers after 1st interaction

8 GeV -ve Pion

30 GeV +ve Pion

80 GeV +ve Pion

Summary

- Studied energy dependence of LHEP and QGSP_BERT from 6GeV to 80GeV c.f. data.
- Studied 12 different physics lists at Energy 30GeV using 2006 data
- ECAL certainly has some discrimination between hadronic models.
- Clear differences in the pion beam shape and content between 2006 and 2007 runs. 2007 beams are generally narrower than 2006.
- Change in the geometry of the ECAL has impact on the apparent response.
- As long as these differences are taken into account, 2006 runs and 2007 runs seem to agree with each other in most cases.
- But there are still differences which need explanation.

THE END

First Interaction layer using depth/X0

Attempt to obtain simple exponential decay for the first interaction layer

For every silicon layer, calculated amount of material previous to such layer in a consistent way.

 W_x = sum of (depth of material / interaction length of material) before 'x'th silicon first interaction layer against W_x is plotted with weight 1/(W_x - W_{x-1})

used following interaction length and depth values.

Material	Depth / mm	Lint / mm
C-fibre	0.3	546
Tungsten	1.4 x n	103.1
Aluminium	0.1	388.8
Air	0.58	701.1
РСВ	2.1	483.4
Silicon	0.53	456

2007 vs 2006

First interaction layer

30 GeV +ve Pion

8 GeV -ve Pion

80 GeV +ve Pion

0.4

0.2

0.2

0.1

0.3

0.4

0.5

Entries 82849

0.7

Mean

RMS

0.6

0.3224

0.2254

0.8

Ratio

Overview of GEANT4 simulations

QGSP

- Quark Gluon-String with
 Precompound
- Precompound (P) calls nuclear de-excitation routine
- 12GeV 50TeV (QGS))
- BERT
 - BERTini cascade
 - Unique evaporation model to de-excite the remnant nucleus
 - Up to ~10GeV

- LCPhys
 - Linear Collider Physics list by Dennis Wright (SLAC)
 - "best-guess selection of EM and hadronic physics processes for LC detector"
- LHEP
 - Low and High Energy
 Parametrized
 - Fast, parametrized model based on GHEISHA
 - Average Energy and Momentum are well described (conserved)

Beam Shape and Position

Run300696 vs Simulations

Longitudinal Energy Distribution

QGSP_BERT

QGSP_BERT_HP

QGSP_HP

Run300696 vs Simulations Longitudinal Energy Distribution

QGSC LEAD

FTFC Run300696 v0406 Entries 3589200 44 Mean 15.5 60 ╻╹╹╻┿ Mean v 39.72 G4_300696_Mokka6.3.p02_FTFC 178530 Entries 50 Mean 15.5 Mean v 43.26 40 RMS 8.655 RMS y 66.88 30 20 10 0₀ 20 30 40 50 60 70 80 90 10

Layer no.

50

40

30

Run300696 vs Simulations First interaction layer

Run300696 vs Simulations First interaction layer

LHEP_BERT

