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Muons as minimal ionizing
particles used to equalize cells
→ most probable value (MPV)
of fit to energy spectrum =̂
MIP calibration constant (AMIP)

Small energy scale→ not
effected by saturation effects

Threshold cut defined by 0.5
MIP→ important to reproduce
correct width in digitized MC
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Digitization: conversion from
energy deposited (MPV =̂ 861
keV) to ADC

Including Poissonian pixel
statistic (number of SiPM
pixels firing fluctuates for same
amount of light) and adding of
noise (random trigger events)

MPV and width are
determined for data and
digitized MC in the same way

MPV correct (lookup of AMIP),
but width of energy spectrum
too small
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Possible reason for
smaller width in
digitized MC: response
of single tile not uniform

Not included in raw MC

Plot shows response of
3x3cm2 tile (mean
100); position from
single-tile test-bench
scan

Largest response in the
middle (≈ 110)
decreasing at the
borders (≈ 80)
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First test in digitized MC: multiply randomly picked response factor
to energy deposited by muon
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tile non-uniformities simulated

Correlation of width without (left) and with tile non-uniformity
simulated (right)

Agreement of width data / digitized MC improved significantly
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Energy sum well described by digitized MC
Tile non-uniformities included give slightly better agreement in low
energy region
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Longitudinal profile shows need for digitization best
Single module features like dead or noisy cells result in large
divergence from true MC
No advantage simulating tile non-uniformity
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Digitization validated with
response to muons→ low
energy scale understood

High energy scale comes with
the need for saturation
correction of SiPM response

Best way to test is the
response to electromagnetic
showers

Positrons runs (2007 CERN)
are used ranging from 10 GeV
to 50 GeV

For digitization no tile
non-uniformity will be
simulated
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Studies on the in-situ response curves with the LED system
indicate that mounted SiPMs saturate at lower signals than
unmounted

Geometrical mis-alignment of the wavelength shifting fiber w.r.t. to
the SiPM reduces effective number of pixels

For reconstruction: original curves measured by ITEP are 80%
scaled for all SiPMs
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Beam energy [GeV]
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 Linearity fit sim

Data reconstructed with scaled response curves

Digitized MC includes noise, optical crosstalk (light leaking to
adjacent, 10%), pixel statistic and saturation simulation

Reconstruction of data / digitized MC is identical

Energy sum shows difference data / digitized MC up to ≈ 17%
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Missing so far, temperature
correction of calibration
constants

1
AMIP

dAMIP
dT = (−3.8± 1.4)%

K
1

Gain
dGain

dT = (−1.7± 0.4)%
K

Positron runs recorded at ≈
2.5◦ C higher temperature
than muon runs that were
used for calibration

Gain (ADC / pix) calibration is
averaged over the whole
test-beam period and has a
mean temperature of 27◦C
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→ Correct calibration
constants according to
temperature differences
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MIP constants are corrected for module wise temperature
differences w. r. t. muon calibration runs

⇒ smaller MIP constants result in more visible energy [MIP]

Discrepancy data / digitized MC reduced by 10% percentage
points
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Positron data
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Gain constants are corrected using an averaged temperature over
the whole calorimeter, positron runs ≈ 1.7◦C hotter than
calibration average

No improvement is observed for the residual to linearity
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Relative width of the
reconstructed energy as a
function of beam energy

data: a = 22.1%, digitized MC:
20.4%, for both b is compatible
with zero

Uncertainty on calibration
constants not reflected in
digitized MC, it uses very
same for digitization and
calibration

Tile non-uniformities need to
be modeled in the generation
of the MC itself
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 2 Mip/E⊕ b ⊕ E/E = a/EσFit:  
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 2 Mip/E⊕ b ⊕ E/E = a/EσFit:  
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10 GeV (left plot) shower maximum data:
4.14 layer, digitized MC: 4.45 layer

40 GeV (right plot) shower maximum data:
5.31 layer, digitized MC: 5.72 layer

Shower shape in good agreement, but seems to start earlier in
data→ hint for missing material in MC
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That the shower is starting
earlier in data can also be
expressed in terms of the
center of gravity (energy
weighted position of hits) in z

Additional material was put in
front of the calorimeter to
study the impact on the
shower (implementation in a
GEANT3 model of the AHCAL)

It was found that the amount of
≈ 5 mm iron are needed to
match MC and data
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(Study by Sergey Morozov)
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To understand discrepancies,
single cell analysis started

Saturation behaviour can be
seen best in shower core

⇒ Select only events with
primary particle hitting center
of a tile

Center of gravity is used to
align drift chambers and
calorimeter

Quality of single cell
agreement differing

⇒ Temperature and scaling
corrections need to be applied
on the single cell level
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Conclusion:

Digitization validated with muons and positrons

Single cell features reproduced→ width of MIP response in good
agreement if considering tile non-uniformity

Proof of principle temperature correction of calibration constants
→ improvement expected using single cell temperature slopes of
constants

Positron data shows non-linearity not present in MC→ further
investigation of the saturation curve needed; single cell scaling
factors coming

Shower shape well described→ comparison of digitized MC for
different hadronic shower models for 2007 pion data started
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