

DAQ Hardware Status

9 September 2008

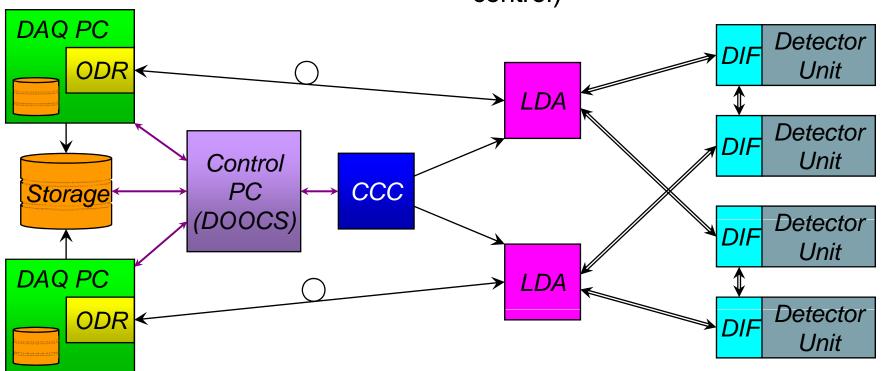
Matt Warren

Valeria Bartsch, Veronique Boisvert Maurice Goodrick, Barry Green, Bart Hommels, Marc Kelly, Andrzej Misiejuk, Vishal Panchal, Martin Postranecky, Tao Wu

DAQ architecture

UCL

Detector Unit: ASICs

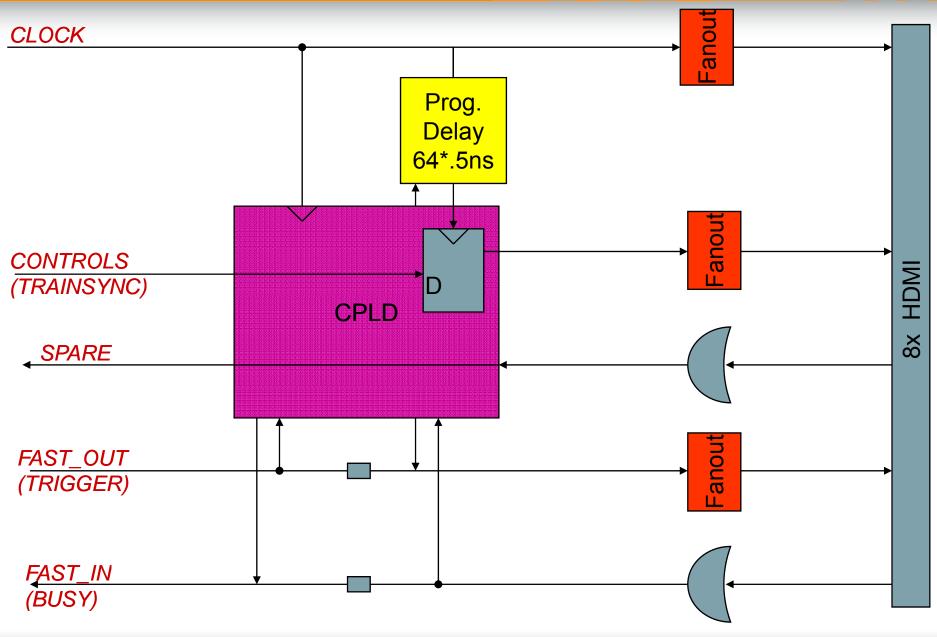

DIF: Detector InterFace connects Generic DAQ and services

LDA: Link/Data Aggregator – fanout/in DIFs and drives link to ODR

ODR: Off Detector Receiver – PC interface for system.

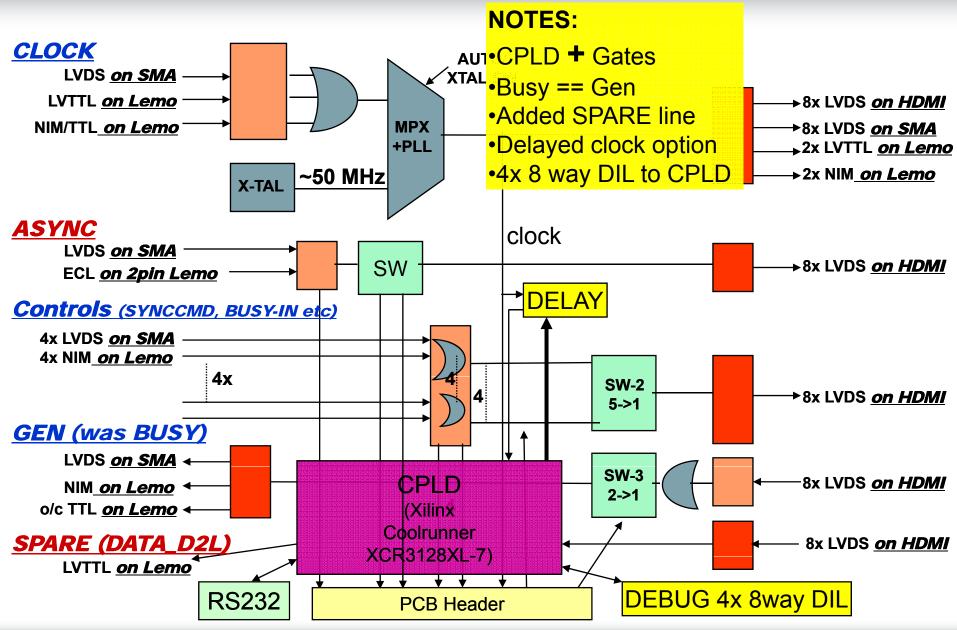
CCC: Clock & Control Card: Fanout to ODRs (or LDAs)

CONTROL PC: DOOCS GUI (runcontrol)



CCC

Overview Schematic



9 Sept 2008

Detailed Overview Schematic

C&C Logic and Interfaces

CPLD (XCR3128XL-7) replacing many jumpers and switch logic

RS232 interface as a means of control

Many buffers, 0Ω resistors and solder links for better signal integrity, isolation and configuration

Signal Inputs:

- CLOCK
 - 1x LVDS (SMA DC)
 - 1x LVTTL DC (Lemo)
 - 1x NIM/TTL (Lemo) AC/DC
- ASYNC
 - -LVDS (SMA) DC
 - ECL (2 pin LEMO) AC
- Controls (SYNCCMD, BUSY etc. + more)
 - -4x LVDS (SMA)
 - 4x NIM/TTL (Lemo) AC/DC

Signal Outputs:

- CLOCK
 - 2x LVTTL on Lemo
 - 2x NIM on Lemo
 - 2x LVDS on SMA
 - 8x LVDS on DILHeader
- TRAINSYNC
 - LVTTL on Lemo
- GEN (was Busy)
 - LVDS on SMA
 - NIM on Lemo
 - OC-TTL on Lemo
- Spare (DATA_D2L)
 - LVTTL on Lemo

HDMI I/O: x8

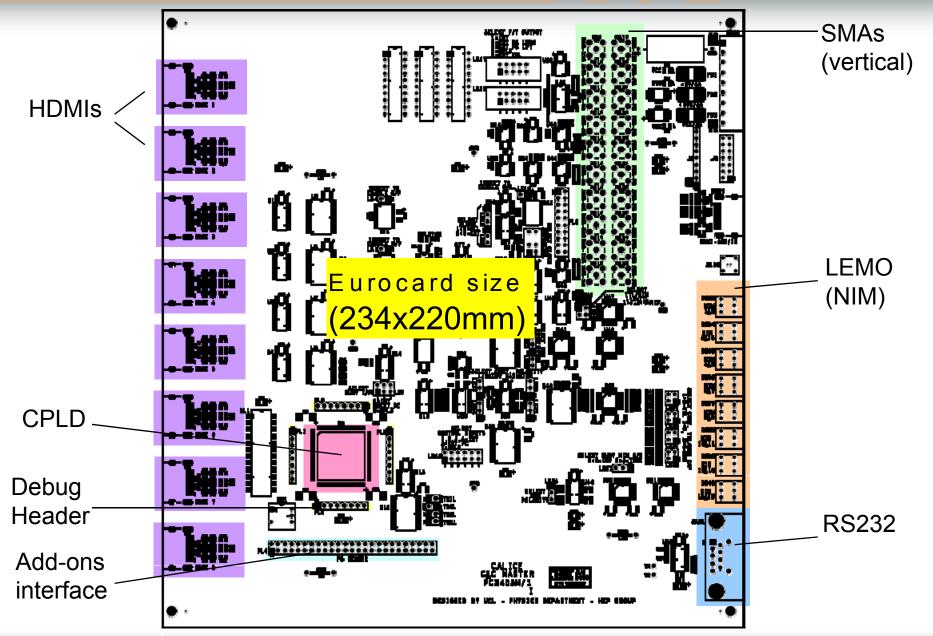
- LVDS AC/DC

OUT:

- CLOCK
- ASYNC
- TRAINSYNC

IN:

- GEN (was BUSY)
- SPARE(DATA_D2L)


Some Hardware Details

- Clock:
 - -PLL/MUX *ICS581-02*
 - +/-150 ps jitter
 - 45min/55max Duty Cycle
 - Failover if external clock missing for 3 cycles.
 - -Local Osc. 100 MHz/2 = 50% duty-cycle 50MHz
- CPLD: Xilinx CoolRunner XPLA3 XCR3128XL-7
 - -3.3V, low power
 - 128 macrocells with 3,000 usable gates
 - 5.5ns pin-to-pin logic delays
- Extra IO via IDC header.
- Single PCB with connectors at the edge (big!)
- Separate PSU
- Clock Delay Option to CPLD 64x0.5ns
 - For signal deskew (CLOCK unaffected)

Board Layout

Status/Schedule

- Schematic DONE.
- Layout **DONE**.
- Manufacture IN PROGRESS
 - Started last week (1 Sept).
 - Run of 2 with 8 more when satisfied working
 - Manufacturing PCBs for all 10 (2x price = 10x price!)
 - Will do second run of PCBs if any problems found
 - -First 2 boards due week of 15 Sept, **BUT** component lead-times may delay a few weeks.
 - -Next 8 loaded as soon as testing is complete.
 - -Procured components for all 10 now, so won't delay further.
- Next: Firmware development!

CCC Link Signals

Function

Asynchronous signal

Clock

TRAINSYNC OUT Trainsync signal output

Busy

Unused

CCC HDMI Signals

CCC Signal

CLOCK OUT

Unused

FAST_OUT

FAST IN

Uses same HDMI cable and signal types/direction

· CLOCK

- Machine clock (50-100MHz) ASYNC_L2D

• TRAINSYNC OUT

- Synchronisation of all the front-end slow clocks.
- -An external signal will be synchronized with/to CLOCK, phase adjusted and transmitted as a single clock-period wide pulse to the LDA.

CLink Signal

CLOCK L2D

DATA L2D

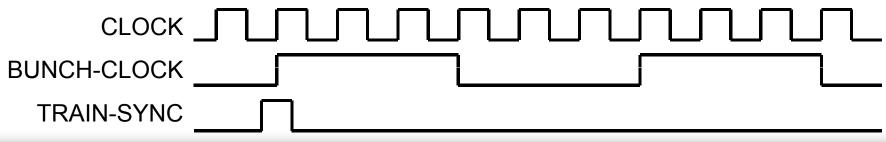
DATA D2L

GEN D2L

- To allow communicating with a stand-alone DIF, the CCC board will can be configured to send the LDA 8b/10b serialised command for train-sync.

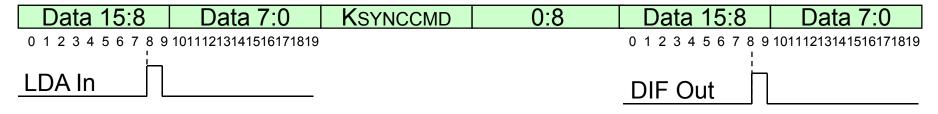
FAST OUT

- Transfer asynchronous triggers as fast as possible.
- In AUTO mode, used to Transfer BUSY to detector (toggle = level)


FAST IN

- Used by DIFs (via LDA) signal to "stop acquisition" when needed.
- Due to AC coupling the busy must asserted by constantly toggling this line.

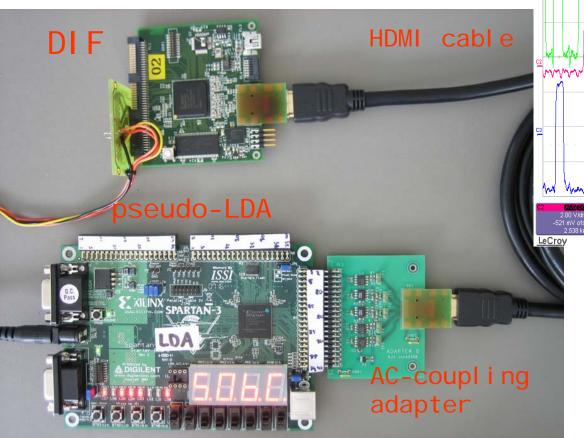
Timing Overview

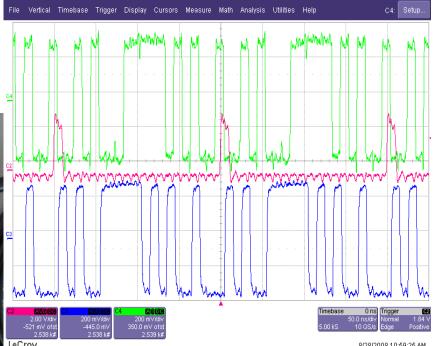

- Presume machine CLOCK period < bunch-period
 - -Expected to be 50-100MHz, local or machine.
 - -Common fanned-out to the detector
- BUNCH-CLOCK (slow clock) derived as CLOCK/n
 - Re-produced locally on DIF (with TRAINSYNC & counter)
- Start of train signal (TRAINSYNC) synchronises bunchclocks on all DIFs.
 - Requires fixed-latency signal a SYNCCMD.
 - -TRAINSYNC "qualifies" CLOCK edge

SYNCCMD Details

- SYNCCMD is the ONLY mechanism for synchronising DIFs
 - -4 (or 16) types of command are possible.
- Expects a PRE bunch-train/spill signal
 - Signal in known phase with BUNCH CLOCK
 - Fixed period prior to first bunch of train
 - Synchronous to CLOCK
- CCC card forwards signal to LDAs
 - Synchronises signal to local clock when needed
- LDA stores arrival time wrt serialiser bit counter.
- Next Word to DIFs replaced with special SYNCCMD word
 - First byte dedicated K character
 - Second byte (7:6): Type; (5:0): Delay (could be 3:5 ratio too)
- SYNCCMD system on DIF delays signal specified number of CLOCKs and issues the required signal.

(generic) DIF


DIF -LDA link testing



Link shows signs of life.

pseudo-LDA sends CLK &
 8B/10B data @ 100MHz over AC-coupled LVDS on HDMI cables

data loop-back in firmware stable

DIF: Status (generic) and Plans UNIVERSITY OF CAMBRIDGE

- Test hardware in place
- Firmware development started
 - LDA Link integration

ECAL DIF prototype: 65x72mm, 8 layers

- JTAG programming header
- LDA link HMDI connector
- DIF link connector
- mini-USB connector
- Xilinx PROM
- Cypress 2MB 10ns SRAM
- Xilinx Spartan3-1000 FPGA
- FDTI FT245R USB controller
- 20p user header connector
- 10. reset pushbutton
- 11. 90pin SAMTEC IB connector

e.g: ECAL DIF

- 2 DIFs produced, parts available for 10 more.
- DIF hardware is (at least partly) functional

LDA

LDA-ODR Connectivity

- Prototype LDA has hardware problems.
 - Mainly incorrect signals routed on PCB to Eth add-on
 - LDA has been modified to attempt fix (see pic!)
 - Ethernet RX OK, auto-negotiation starts OK. BUT ...
 - Ethernet TX appears corrupt
 - random glitches and/or clock recovery problems.
 - PHY in loop-back OK, so looks like the SERDES
 - Investigating ...
- •SOME GOOD NEWS: ODR-LDA protocol almost finalised

LDA-DIF Connectivity

- Current boards have 8 working HDMI links,
 - Option for 10 on future boards with simple change of FPGA.
- FPGA is basically used as an LVDS transceiver and clock fanout, although it will probably also handle the separate prompt/fast signals to/from the DIF.
- Link documentation is proceeding, large amounts have been already done.

New LDA Base Board

- Enterpoint is designing a replacement board for the BroadDown2 known as the Mulldonoch2.
 - Extra I/O capabilities.
 - EBX format board.
 - PCI connector is replaced by a PC104 connector.
 - SDRAM onboard.
 - SPI flash ram.
 - Better power system
- Prototype production is expected sometime this month.
- Is not designed for us especially, but rather is a generic board Enterpoint had planned already. Design time table got shifted when we found the error in the existing BD2 design.
- A corrected BroadDown2 design is also going to be available in roughly the same time frame.

LDA: Conclusions

- Need to get Ethernet working, without that we are dead in the water currently.
- •Then we can proceeded with more of the firmware development and begin to get to a point where it might actually be useful and talk to the outside world.
- Need to consider what the BD2->MD2 migration path means for us, with regard to possible changes to LDA design, to include more features etc.
 - Possible re-spin of the Ethernet Board, to remove the bits we don't want/need and lower cost of it. (MD2 might already have USB built in, and we might decide to skip the TLK2501 all together).
 - Possible extra HDMI interface expansion given the extra IO.
- •Bench tests need to be done on the timing/synchronisation system to make sure we can achieve in practice what we thought was possible.

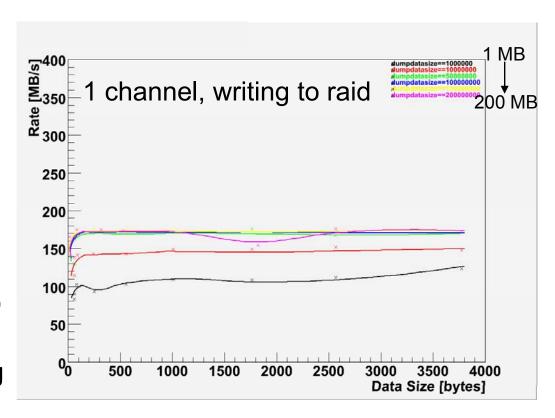
ODR

Hardware/Firmware

- ODR is working(!)
 - -Receive data on 4x fibre (RX),
 - -Write to disk FAST (250MB)
 - -Send data up fibre (TX)
 - -Controlled from Linux driver

- Future upgrade: Decode event header from LDA
 - -Provides on-line info
 - –Can deal with control messages from LDA
 - Allows host to write to disk without processing

Rate performance optimization

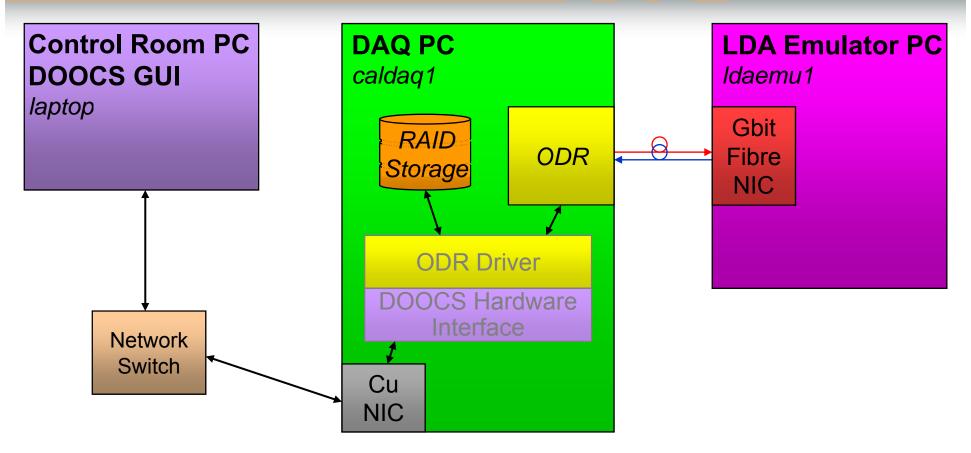


(from ODR to disk)

Several factors to optimize:

- Architecture of the host (hyperthreading, raid array disks, kernel version, etc)
- Number of DMA buffers
 - currently using 950
- Number of buffers to fill before dumping the data to disk
 - best to have about N DMA buffers - 200 (so 750 for 950 DMA buffers)
- Size of files to write (grouping of data files)
 - Called dumpdatasize on plot
 - Dominant factor
 - chose 100 MB

9 Sept 2008



V. Panchal, V. Boisvert, A. Misiejuk

Software: Interface to DOOCs Supervisor **DOOCS** TX LDA msg Config TX DMA FIFO to FIFO Two way user buffer communication Dup. **ODR** VHDL code Requester, DOOCS DMA data to user buffer(s) Interface (host memory) Data Buff Hardware ODR Software ODR

Demo Construction (Advert!)

- Control PC signals LDA Emulator (via ODR) to start or stop sending data with command messages
- ODR receives data and writes it to disk.

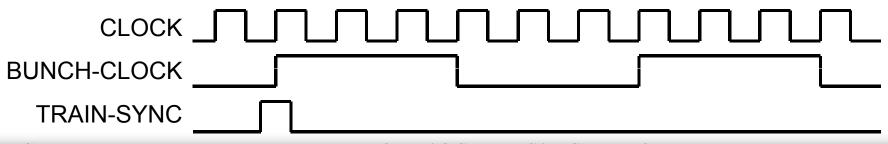
The End

(actually not the end) Extra slides on C+C

Introduction

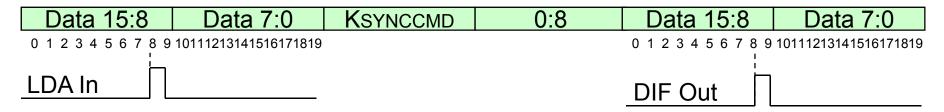
- Goal: A timing system compatible with everyone (Remi/Vincent/Mathias etc. been asking good questions)
- Looked at details of:
 - –Operating modes
 - Trigger
 - Auto
 - Single
 - –Machine interface/sync
 - Synchronisation of detector
 - -Signalling over our cables
 - Common usage AND SIGNAL NAMING
 - –Handing FE errors etc (BUSY)

Connection Overview



1 Control PC DIF 1 CCC 8 LDA **8**x 8 DIFs **LDA 8**x **Control Room PC** CCC

Timing Overview


- Presume machine CLOCK period < bunch-period
 - -Expected to be 50-100MHz, local or machine.
 - -Common fanned-out to the detector
- BUNCH-CLOCK (slow clock) derived as CLOCK/n
 - Re-produced locally on DIF (with TRAINSYNC & counter)
- Start of train signal (TRAINSYNC) synchronises bunchclocks on all DIFs.
 - Requires fixed-latency signal a SYNCCMD.
 - -TRAINSYNC "qualifies" CLOCK edge

SYNCCMD Details

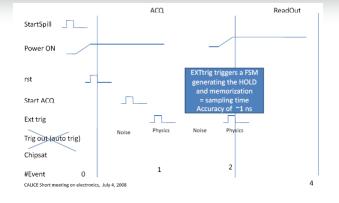
- SYNCCMD is the ONLY mechanism for synchronising DIFs
 - -4 (or 16) types of command are possible.
- Expects a PRE bunch-train/spill signal
 - Signal in known phase with BUNCH CLOCK
 - Fixed period prior to first bunch of train
 - Synchronous to CLOCK
- CCC card forwards signal to LDAs
 - Synchronises signal to local clock when needed
- LDA stores arrival time wrt serialiser bit counter.
- Next Word to DIFs replaced with special SYNCCMD word
 - First byte dedicated K character
 - Second byte (7:6): Type; (5:0): Delay (could be 3:5 ratio too)
- SYNCCMD system on DIF delays signal specified number of CLOCKs and issues the required signal.

Timing Environment

- CCC does NOT support varied delays on individual outputs.
- LDAs can NOT adjust individual link timings
 - -Presumed cables to all LDAs equal length
- DIFs need to adjust own timing if needed
 - –FPGA resources (or board)
 - -Custom cables (available?)
- CCC card can adjust timing of TRAINSYNC wrt CLOCK (1/2 ns steps)

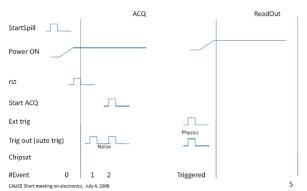
CCC Link Interface

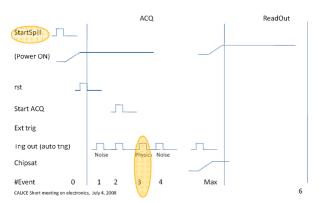
- CCC connects to LDA, DIF and ODR using the 'standard' HDMI cabling and connectors and pinout (*CLink*)
 - CCC can be used as a pseudo-LDA for stand-alone DIF testing
- A distinction is made between fast and fixed latency signals:
 - Fast signaling is asynchronous and uses a dedicated line to transfer a pulse. No attempt is made to encode data.
 - Fixed-latency signaling will not arrive fast, but will arrive a known latency after reception by CCC (Jitter 1 CLOCK).


HDMI Signals				
CLink Signal	Direction	Function	Туре	
CLOCK_L2D	LDA→DIF	Distributed DIF Clock	STP	
DATA_L2D	LDA→DIF	Data to DIF (mainly configuration)	STP	
DATA_D2L	DIF→LDA	Data from DIF (mainly events)	STP	
ASYNC_L2D	LDA→DIF	Asynchronous Trigger	UTP*	
GEN_D2L	DIF→LDA	General use	STP	

^{*} Twisted pair not guaranteed by HDMI specification but seen in commercial cables

Detector Operating Modes


- Triggered
 - External signal causes ASICs to take data



Remi Cornat

- Single (auto-trig)
 - ASICs auto select data, but readout controlled by trigger

- Burst (auto-trig)
 - -ASICs signal when full
 - -Fed to CCC as BUSY
 - CCC sends stop-acquisition signal to entire detector

CCC Link Signals

Function

Trainsync signal output

Asynchronous signal

CCC HDMI Signals

Clock

Unused

Busy

CCC Signal

TRAINSYNC OUT

CLOCK_OUT

Unused

FAST OUT

FAST IN

· CLOCK

– Machine clock (50-100MHz)

•	TRA	INS	YNC	OUT
---	-----	-----	-----	-----

- Synchronisation of all the front-end slow clocks.
- An external signal will be synchronized with/to CLOCK, phase adjusted and transmitted as a single clock-period wide pulse to the LDA.
- To allow communicating with a stand-alone DIF, the CCC board will can be configured to send the LDA 8b/10b serialised command for train-sync.

CLink Signal

CLOCK L2D

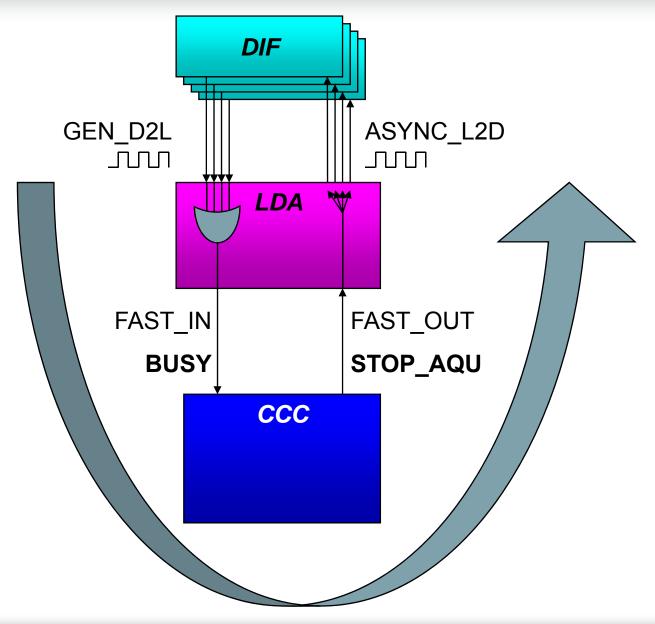
DATA L2D

DATA D2L

GEN D2L

ASYNC L2D

FAST OUT


- Transfer asynchronous triggers as fast as possible.
- In AUTO mode, used to Transfer BUSY to detector (toggle = level)

FAST_IN

- Used by DIFs (via LDA) signal to "stop acquisition" when needed.
- Due to AC coupling the busy must asserted by constantly toggling this line.

Busy Flow

