Children Constant of Constant

CALICE Collaboration Meeting

Power efficient 12-bit PIPELINE ADC for the ECAL

Manchester University

Fatah-Ellah Rarbi Daniel Dzahini Laurent Gallin-Martel

Outline

- Digitizer for CALICE
- Why a high speed ADC?
- Pipeline ADC
 - Full 1.5 bit
 - Multi-bits prototype
- Analog MUX 36 to 1
- Conclusion

09/09/2008

Digitizer for CALICE

Why a high speed ADC?

- Multiplex 36 to 1 ADC
- High speed converter:
 - Read all channels faster
 - More "IDLE mode" time => Saving power
 - digital noise source from one ADC

INL from ADC Model with and without gain error versus testing results

This shape corresponds to:
→ Capacitance matching
→ Parasitic capacitances
→ Jitter

Power pulsing: output codes point of view=>16 to 20µs

CALICE Collaboration Meeting

Power Pulsing reliability

New prototype

Dynamic Element Matching

MDAC 2b5: Linearity

Analog MUX 36 to 1

- Architecture:
 - Flip-Flop
 - Pseudo differential input
- Power dissipation
- Linearity

Linearity

Total Power consumption

Conclusion

- Pipeline ADC: 12 bits
 - $V_{dd} = 3.3V$
 - Dynamic range: 2V
 - Sampling rate: 25MS/s
 - Power dissipation: 37mW
 - FOM: 1.48mW/MHz
- Analog MUX 36 to 1
 - Pseudo differential input
 - Dynamic range : 2V
 - Power dissipation: <10mW</p>
- Total Power = 45nW/Channel if 36 channels to 1 ADC
- Next steps
 - Test of this prototype
 - Power Supply reduction to $2.5V \rightarrow 1V$ dynamic
 - Gain error Correction → Extra power reduction

09/09/2008

Fatah Rarbi - Daniel Dzahini -CALICE Collaboration Meeting

Grenebie IN2P3

CALICE Collaboration Meeting **Thank you for** your attention

Power efficient 12 bits PIPELINE ADC for the ECAL

Manchester University

Fatah-Ellah Rarbi Daniel Dzahini Laurent Gallin-Martel