

A 12-bit cyclic ADC dedicated to the VFE electronics of Si-W Ecal

Laurent ROYER, Samuel MANEN

LPC Clermont-Ferrand

INSTITUT NATIONAL DE PHYSIQUE NUCLÉAIRE ET DE PHYSIQUE DES PARTICULES

VFE electronics of Si-W Ecal

Proposal: one ADC per channel

With one-ADC-per-channel architecture:

Two candidates for the architecture of the ADC

	Cyclic	Pipeline
Resolution	12 bits	12 bits
Time for one conversion	12 clock periods	1 clock period ⁽¹⁾
Power consumption (norm.)	1	12 down to $\approx 6^{(2)}$
Integrated power cons. (time * power cons.)	12	12 down to $\approx 6^{(2)}$
Area	1	12 down to $\approx 10^{(3)}$

¹ after a latency of 12 clocks period for the first conversion

² if a power optimization on each stage is implemented

³ if a capacitor size optimization per each stage is implemented

A 12-bit cyclic ADC (1)

The 12-bit cyclic ADC prototype designed @ LPC Clermont:

- Sent to fabrication in March 08, 10 chips delivered with delay in July
- Technology: 0.35 µm CMOS Austriamicrosystems
- ADC designed with the validated building blocks (Amplifier & Comparator) of our 10-bit pipeline ADC (published in IEEE NS in June 08) but optimized for the 12-bit precision requirement
 - \rightarrow enhanced building blocks tested with a dedicated chip (July 07)
- 1.5 bit architecture (2 bits per cycle)
 - \rightarrow relaxed constraints on offsets of comparators
- External bits processing (deserializer & 1.5bit algorithm)
- Power pulsing system implemented

Layout of the chip

A 12-bit cyclic ADC (2)

• Performance of the cyclic ADC:

İİİ

- Improved architecture: calculation of two bits during one clock period
- \rightarrow Time of conversion: 7µs w/ 1MHz clock freq.
- \rightarrow 1 ampli. + 2*2 comp. + 2 capacitors arrays
- Consumption: 4 mW/3.5V
- Integrated cons. with power pulsing:
 - ✓ 0.7 μ W with analog memory depth of 5 events
 - 2.2 µW with analog memory depth of 16 events
- Area: 0.175 mm²

Very First results of measurement

C Very First results of measurement

L.Royer – Calice Meeting @ Manchester – Sept. 2008

L.Royer – Calice Meeting @ Manchester – Sept. 2008

Code fluctuation @ 1V

Standard deviation = 0.84 LSB (420µV)

- A 12-bit cyclic ADC prototype, dedicated to Calice, is fabricated and under test
- First measured performance is in accordance with simulations (speed, resolution, power cons., noise)
- Next measurements have to evaluate:
 - Dispersion of the performance on the 10 chips produced
 - Dependence of performance with clock frequency
 - Performance of the Power pulsing (recovery time of the biasing)

Results will be presented during the next IEEE meeting in Dresden

One ADC per n channel

