HEPHY Testbeam 2008: First tracking results

Zdenek Dolezal, Zbynek Drasal, Peter Kvasnicka IPNP, Charles University, Prague

Thomas Bergauer, Marko Dragicevic, Markus Friedl HEPHY, Vienna

2. June 2008

* The presenter is supported by EU I3 contract 026 126-R II3 (EUDET)

Outline

- HEPHY beam test at CERN in 2008
 - very) basic data, tasks and challenges
- Zones on DUTs
 - $\neg\,$ Zone η corrections and edge effects
- DEPFET tracking and resolution calculations
- Zone resolutions very first results
 - Overview what we did
 - Results: reproducibility across runs
- EUDET telescopes
 - Independent analysis path

HEPHY beam tests at CERN in 2008

- 8 strip detectors between 2 and 3 EUDET telescopes
- 120 GeV п⁺ beam on SPS
- Strip detectors with 16 zones of 16 strips, pitch 50 µm. Each zone with different properties (strip width / intermediate strips)
- Low multiplicity on EUDET telescopes: about 5 hits per event
- Measurement plan includes high-statistics runs and runs with inclined detector

Zones on DUTs

16 zones of 16 strips	Zone	Strip width	Intermediate
 Account for / Describe position- dependent detector properties 	1	[µ111] 6	no
dependent detector properties	2	10	no
Must have enough tracks passing	3	12,5	no
through each zone	4	15	no
	5	20	no
Non-standard properties in border	6	25	no
regions between zones. We cannot	7	6	single
simply discard tracks passing	8	7,5	single
	9	10	single
	10	12,5	single
Zone u	11	15	single
Zone 1	12	17,5	single
7ono 2	13	6	double
	14	7,5	double
Zone 3	15	10	double
Zone 4	16	12,5	double

Hit reconstruction: the zone η correction

- Zone η correction = η for 16 strips (rather than for 1)
- We need to handle (unknown) boundary effects between zones with different strips. This is done automatically by the zone eta.
- A simple and straightforward method, relying on the large statistics that we have.

Zone η correction: Create uniform distribution over whole 16 strips of a zone rather than over a single strip. This also takes care of zone boundary effects.

Zone resolutions

- Resolutions calculated using the DEPFET tracking sw, (hacked to work with strips) provides detector resolutions
- Resolutions are calculated simultaneously for all detectors
- First approximation in case of zones:
 - Calculate resolutions for zones on detector 3, using tracks going through the respective zone
 - ¬ On other detectors, use average resolution

The DEPFET tracking software

- Tracing sw created for tracking of DEPFET pixels
- A standard analysis chain, comprising
 - i hit reconstruction
 - ii track identification
 - iii detector alignment and track fitting
 - iv calculation of detector resolutions
 - reliability/sensitivity study on simulated data.

- Several new methods:
 - a track selection
 algorithm based on the
 principal components
 analysis (PCA)
 - ii robust linearized alignment
 - iii direct computation of detector resolutions based on a track model that explicitly takes into account multiple scattering

Calculation of resolutions

- In detector resolution calculations we decompose track projection errors (fit residuals) into contributions of
 - measurement error (detector resolution)
 - telescope error (error of track projection on the detector)
 - contribution of multiple
 scattering to telescope
 error

- We use straightforward matrix inversion combined with quadratic programming or bootstrap resampling of the residual covariances to assure positivity of squared resolutions.
- In particular, with the method we don't need infinite energy extrapolation or telescopes with known resolutions.

Zone resolutions - overview

- We calculated zone resolutions by using only tracks that passed the required zone on detector 3.
- Each time, resolutions are calculated for all detectors, but we have "clean" resolution only for detector 3.

- Resolutions on other detectors are "mixed", arising from tracks passing different zones.
- In a following step, the resolutions obtained this way can be used on other detectors as appropriate for individual tracks.
- No special treatment for edge zones was used.

Zone resolutions - results

- We have to combine results of several runs to reach sufficient occupancy over all area of the detector. Even so, we don't have enough data for edge detectors.
- This graph allows to assess the precision of calculated resolutions.

Zone resolutions - results

Strip width [µm]	Intermediate strips	Run 0001	Run 2718	Run 2719	Run 2720	Run 2721
6	no					
10	no				9.17±0.11	8.93±0.21
12,5	no				9.01±0.10	8.94±0.23
15	no			8.54±0.11	9.02±0.10	8.99±0.21
20	no			9.03±0.10	9.12±0.10	8.97±0.21
25	no			9.29±0.11	9.13±0.10	8.81±0.21
6	single	5.66±0.10		5.60±0.07	5.69±0.07	5.95±0.14
7,5	single	5.61±0.09		5.49±0.06		
10	single	5.85±0.09	5.39±0.07	5.45±0.07		
12,5	single	5.56±0.09	5.23±0.06	5.00±0.06		
15	single	5.08±0.08	4.78±0.05	4.84±0.06		
17,5	single	5.09±0.08	4.97±0.06	5.00±0.06		
6	double	4.95±0.08	4.72±0.05	4.75±0.06		
7,5	double	4.80±0.08	4.70±0.05			
10	double					
12,5	double					

Analysis plans: EUDET telescopes

- EUDET telescopes: provide another, independent path to the same analysis.
- Nearly in all cases, analysis can be carried out using HEPHY dets alone, or usingg telescopes to look at a single HEPHY det, accounting other HEPHY detectors only for multiple scattering.
 - Pro: Multiple scattering contributes tenths of microns to measurement errors
 - Pro: Hit multiplicity is not serious in the data.
 - Con: We have rougher hit reconstruction for EUDET telescopes
 - Con: We need mixed alignment among EUDET telescopes and HEPHY dets to carry outt the analysis

Hit reconstruction and edge effects: all those η functions

- η corrections are not presented here.
- Use zone η corrections for the analysis
- Only in post-processing, separate effects create "standard" η corrections (for a single strip) and analyze edge effects.
- η functions are a good descriptor of sensor properties.
- What can we say about detector resolution when looking at an η correction function?

Telescopes

- Nearly in all cases, analysis can be carried out using HEPHY dets alone, or usingg telescopes to look at a single HEPHY det, accounting other HEPHY detectors only for multiple scattering.
 - Pro: Multiple scattering contributes tenths of microns to measurement errors
 - \neg Pro: Hit multiplicity is not serious in the data.

- Con: We have rougher hit reconstruction for EUDET telescopes
- ¬ Con: We need mixed alignment among EUDET telescopes and HEPHY dets to carry outt the analysis

Thanks for your attention.

Backup slides

Analysis: Calculation of Resolutions

We however need tracks with a sufficient number of measurements per track (at least 5 per dimension). Otherwise the method provides a regularized MLS estimate – that is, a minimum-norm vector of detector resolutions.

The problem to be solved has the form

$$\begin{array}{c} diag^{-1}cov\left(u^{(c)}\right) = \mathbf{M}_{\Delta} \cdot \Delta^{2} + \mathbf{M}_{\Sigma} \cdot \Sigma^{2} \\ \text{vector} & \text{covariance matrix} & \text{vector of squared} \\ \text{detector resolutions} & \text{vector of mean square} \\ \text{detector resolutions} & \text{vector of mean square} \\ \text{detector resolutions} & \text{vector of mean square} \\ \text{square} & \text{square} \\ \text{square} & \text{square} \\ \text{whether projections are calculated using the given detector or not} \end{array}$$

It can be solved by SVD inversion of M_{Δ} , but we also have to assure that we obtain positive Δ^2 . For this, quadratic programming or bootstrap resampling of residual covariances can be used.

Analysis: Errors in alignment and resolutions

- Alignment and resolutions are calculated using linear algebra, but they contain inherent non-linearities. Therefore, linear regression error estimates are not usable and we have to use a different method of error calculation.
- Errors are calculated by bootstrap resampling of regression residuals:

- 1 Generate a large number (several hundreds) of replicas of the original track set: combine parameters of each track with a set of residuals from another, randomly selected track.
- 2 Repeat the analysis for each replicated set
- 3 Determine errors from distributions of parameters
- Though computationally intensive, the method is simple and reliable.

- 8 strip detectors between 2 and 3 EUDET telescopes
- 120 GeV π⁺ beam on SPS
- Strip detectors with 16 zones of 16 strips, pitch 50 µm. Each zone with different properties (strip width / intermediate strips)
- Low multiplicity on EUDET telescopes: about 5 hits per event
- Measurement plan includes high-statistics runs and runs with inclined detector

Peter Kvasnicka & the DEPFET collaboration: ILC ECFA Workshop 2008, Warszaw

Zone resolutions

- Resolutions calculated using the DEPFET tracking sw, (hacked to work with strips) provides detector resolutions
- Resolutions are calculated simultaneously for all detectors
- First approximation in case of zones:
 - Calculate resolutions for zones on detector 3, using tracks going through the respective zone
 - ¬ On other detectors, use average resolution

Peter Kvasnicka & the DEPFET collaboration: ILC ECFA Workshop 2008, Warszaw

The DEPFET tracking software

- Tracing sw created for tracking of DEPFET pixels
- A standard analysis chain, comprising
 - i hit reconstruction
 - ii track identification
 - iii detector alignment and track fitting
 - iv calculation of detector resolutions
 - v reliability/sensitivity
 - Peter**Skydsnichaskritiel@terffcfada**llaboration: ILC ECFA Workshop 2008, Warszaw

- Several new methods:
 - a track selection algorithm based on the principal components analysis (PCA)
 - ii robust linearized alignment
 - iii direct computation of detector resolutions based on a track model that explicitly takes into account multiple scattering

Calculation of resolutions

- In detector resolution calculations we decompose track projection errors (fit residuals) into contributions of
 - measurement error (detector resolution)
 - telescope error (error of track projection on the detector)
 - contribution of multiple polation or telescopes
 scattering to telescope with known resolutions.
 Peter Kyasnicka & the DEPFET collaboration:
 ILC ECFA Workshop 2008, Warszaw
- We use straightforward matrix inversion combined with quadratic programming or bootstrap resampling of the residual covariances to assure positivity of squared resolutions.
- In particular, with the method we don't need infinite energy extrapolation or telescopes

Notes:

if we discard tracks passing through edge zones (say, through the two boundary strips), we lose close to 100% of tracks – detectors are shifted.

Relative errors in resolutions: 2718-2720 1,2%, typicky 6000 trackov na zonu 0001 1,7% 2721 2,5%

Zone resolutions - results

Strip width [µm]	Intermediate strips	Run 0001	Run 2718	Run 2719	Run 2720	Run 2721
6	no					
10	no				9.17±0.11	8.93±0.21
12,5	no				9.01±0.10	8.94±0.23
15	no			8.54±0.11	9.02±0.10	8.99±0.21
20	no			9.03±0.10	9.12±0.10	8.97±0.21
25	no			9.29±0.11	9.13±0.10	8.81±0.21
6	single	5.66±0.10		5.60±0.07	5.69±0.07	5.95±0.14
7,5	single	5.61±0.09		5.49±0.06		
10	single	5.85±0.09	5.39±0.07	5.45±0.07		
12,5	single	5.56±0.09	5.23±0.06	5.00±0.06		
15	single	5.08±0.08	4.78±0.05	4.84±0.06		
17,5	single	5.09±0.08	4.97±0.06	5.00±0.06		
6	double	4.95±0.08	4.72±0.05	4.75±0.06		
7,5	double	4.80±0.08	4.70±0.05			
10	double					
12.5	double					

- EUDET telescopes: provide another, independent path to the same analysis.
- Nearly in all cases, analysis can be carried out using HEPHY dets alone, or usingg telescopes to look at a single HEPHY det, accounting other HEPHY detectors only for multiple scattering.
 - Pro: Multiple scattering contributes tenths of microns to measurement errors
 - Pro: Hit multiplicity is not serious in the data.
 - Con: We have rougher hit reconstruction for EUDET telescopes
 - Con: We need mixed alignment among EUDET
 - Petertelescopes and the Physicate and analysis ILC ECFA Workshop 2008, Warszaw

Hit reconstruction and edge effects: all those η functions

- η corrections are not presented here.
- Use zone η corrections for the analysis
- Only in post-processing, separate effects create "standard" η corrections (for a single strip) and analyze edge effects.
- η functions are a good descriptor of sensor properties.
- What can we say about detector resolution when looking at an η correction function?

Peter Kvasnicka & the DEPFET collaboration: ILC ECFA Workshop 2008, Warszaw

Telescopes

Nearly in all cases, analysis can be carried out using HEPHY dets alone, or usingg telescopes to look at a single HEPHY det, accounting other HEPHY detectors only for multiple scattering.

- ¬ Pro: Multiple scattering contributes tenths of microns to measurement errors
- Pro: Hit multiplicity is not serious in the data.
- ¬ Con: We have rougher hit reconstruction for EUDET telescopes
- Con: We need mixed alignment among EUDET telescopes and HEPHY dets to carry outt the analysis

Peter Kvasnicka & the DEPFET collaboration: ILC ECFA Workshop 2008, Warszaw

Analysis: Calculation of Resolutions

• We however need tracks with a sufficient number of measurements per track (at least 5 per dimension). Otherwise the method provides a regularized MLS estimate – that is, a minimum-norm vector of detector resolutions.

The problem to be solved has the form

$$diag^{-1}cov\left(u^{(c)}\right) = \mathbf{M}_{\Delta} \cdot \Delta^{2} + \mathbf{M}_{\Sigma} \cdot \Sigma^{2}$$
vector of covariance matrix of residuals vector of squared detector resolutions vector of mean square detector resolutions (known from tracking) Matrices depending on the method of calculation - whether projections are calculated using the given detector or not.
It can be solved by SVD inversion of \mathbf{M}_{Δ} , but we also have to assure that we obtain positive Δ^{2} . For this, quadratic programming or bootstrap

resampKmasoickeskdual ይወይቨቭስናሪት አመጫ መድባ used. ILC ECFA Workshop 2008, Warszaw

17

that

Analysis: Errors in alignment and resolutions

- Alignment and resolutions are calculated using linear algebra, but they contain inherent non-linearities. Therefore, linear regression error estimates are not usable and we have to use a different method of error calculation.
- 1 Generate a large number (several hundreds) of replicas of the original track set: combine parameters of each track with a set of residuals from another, randomly selected track.
- 2 Repeat the analysis for each replicated set
- 3 Determine errors from distributions of parameters
- Errors are calculated by Though computationally
 Peterotytical resampling of intensive, the method is regression weside above, warszaw simple and reliable.