ATF2 C and S band BPM software & control

Stewart Boogert (JAI @ RHUL) Other participants A. Lyapine, B. Maiheu (UCL)

> LAL ATF2 meeting 19 June 2008

C/S-band processing software/controls

ATF Cavity BPMs

- 34 C-band cavities
- 3/4 S-Band cavities
- 3 possible test cavities (possible overhead)
- Processing for total 41 cavity BPMs
 - 20 MHz IF digitised at 100 to 120 MHz
 - Extract I-Q
 - Apply calibration constants (I-Q rotation, scale)
- Environmental monitoring
 - Tone calibration
 - Temperature etc...

Cavity BPM software system

- Same system can be used for both cavity BPMs C and S band
 - Digitally process 20 MHz IF, digitally mix to base-band
 - Robust code available based upon experience at ATF (NanoBPM and ESA-T474)
 - Either waveform fitting (slow, variable calculation latency) or digital downconversion (fast, fixed calculation latency)
 - nanoBPM and ESA results based on DDC method

Existing physical configuration

- 2VME systems
 - I with MVME-167
 - I with no controller
- Existing system based on nanoBPM
- VxWorks IOC serving waveform data
- Last visit to KEK tested 10 SIS cards

MVME-167 will not work in 64X crate, need ethernet connector for backplane

Existing logical configuration

- MVME-167 system NFS boots from nanoSun
- nanoSun : linux RH enterprise machine
- out of date, disks nearly full etc etc
- Seriously consider updating machine
- Processed database on nanoSun or replacement

Hardware configuration

- MVMEI67
 - 12 SIS3301
 - 3-4 VIMC slow DC coupled digitizers
 - 2 Oregon scientific stepper controllers (might be useful for later)
- VxWorks EPICS problematic (version 3.13.10)
 - CASR/Archiver don't appear to work
 - ChannelAcess o.k
 - Simple archiver based on command line caput/get and cron job implemented for summer monitoring

Simple EPICS interface

- EPICS access to BPM waveforms
 - EPICS CA to waveform digitizers
 - EPICS process can also calculate main quantities of DDC (see database)
 - Does this process monitor mover state changes?
- Will integrate acquisition and processing in new VME processor

EPICS database

 Database well defined

Hardware \longrightarrow :

- Most of variables will be intermediate quantities for debugging
- Database can be conceptually divided in relevant areas
 - Raw data
 - Processed data
 - Quality monitoring
 - Calibration

BPM raw data

- bpm1:waveform_x
- bpm1:waveform_Y

BPM processed data

- bpm1:ω_{X,}ω_Y
- bpm1: Γ_X, Γ_Y
- bpm1:A_X,A_Y
- bpm1: $\phi_{X,} \phi_{Y}$
- bpm1:l_X,l_Y
- bpm1:Q_X,Q_Y
- bpm1:x,y → ATF
- bpm1:calibrating?
- bpm1:saturation?
- bpm1:analysis?

BPM calibration

- bpm1:scale_X,scale_Y
- bpm1: Φ_{IQ}, Φ_{IQ}

More complicated interface aspects

- Calibration using magnet mover system
 - Who controls this?
 - How are the constants calculated?
 - BPM system informed of magnet mover system state changes?
- Calibration tone, is stored locally on crate controller and updates main constants on a pulse by pulse basis (no problems there)
- Asynchronous full BPM buffers must also be stored for debugging (0.01 Hz, full waveforms)
- Ancillary data? Temperature monitoring/LO power

Quad mover calibration

- Possible schemes
 - BPM system informed of calibration
 - Starts monitoring mover positions
 - Once sufficient data available calculate calibration coefficients
- Should be V-system controlled
 - Could just start a sequence of actions on mover/bpm system

Environmental monitoring

- Need to have well understood calibration constants
 - nanoBPM experience not promising
 - ~few hours
 - ESA monitored calibration stability over 12 to 24 hours
 - Mainly temperature related
 - Small drifts only 2 degrees

BPM resolution ~500 nm

SBC crate controller

- VME system arrived in Royal Holloway
 - GE Fanuc V7865
 - Single slot (NFS mount primary or flash drive)
 - Intel Core 2 Duo @ 2.16 GHz
 - Dual gigabit ethernet
 - Will scale for entire ATF2 lifetime
 - Probably install linux with real time extensions
 - EPICS (complete with extensions)
 - One SIS3301 already at Royal Holloway another to come from SLAC (ESA) in a month

Summer preparation work

- IOC for processed BPM data
 - Nearly complete
 - Develop simulation mode (existing nanoBPM data and/or simulation of RF waveforms)
 - Simulation Maiheu/Lyapin (complete enough to simulate first pulse)
- Processing algorithms
 - Update to new ESA analysis (B. Maiheu is working on this) will meet in two weeks to discuss
- Linux low level driver code (just SIS3301)
 - ~I month development and test time

Summary

- BPM processed data database and algorithms should be complete within a month
 - Linux/EPICS Driver for SIS3301 will take longer but not required for first beam, will upgrade during course of first operations year
- Calibration algorithms
 - Mover state monitoring
 - VMIC input (temperature, LO, will also take time)
- First beam system almost ready (based on MVME-167 existing infrastructure)
 - Unstable, unsupported (available expertise)
 - Good starting point

Action items /discussion points

- Overall control structure?
- Various async processes
 - Frequency and decay constant
 - Electronics gain, phase monitoring
 - Updating general calibration/control constants
- Event monitoring architecture?
 - Quad mover calibration
- Stable operations will need good archiving and save/ restore functionality
 - Data available to experts remote participants