Tuning ATF2 at lower IP betas, goals and troubles

R. Tomás, S. Bai P. Bambade and Y. Renier

ATF software review, 2008

Exploring ultra-low β^* values in ATF2 – p.1/17

Contents

- Motivation: Learn how tuning difficulty scales with σ_y
- Reducing betas in ATF2
- Tuning ATF2 at lower betas
- Remarks: Apertures and Shintake monitor
- Summary

Motivation I: The proposal

A R&D proposal has been recently submitted to ATF: "Exploring ultra-low β^* values in ATF2" P. Bambade, Y. Renier, *LAL (France)* S. Bai, *IHEP* (China) and LAL (France) H. Braun, J.P. Delahaye, D. Schulte, R. Tomás, F. Zimmermann, CERN (Switzerland) J. Gao, D. Wang, X.W. Zhu, *IHEP (China)* Y. Honda, S. Kuroda, T. Okugi, T. Tauchi, J. Urakawa, KEK (Japan) A. Seryi, M. Woodley, *SLAC (USA)* D. Angal-Kalinin, J. Jones, A. Scarfe, CI (UK)

Motivation II: Tuning difficulty

Project	Status	σ_y^* [nm]
FFTB	Measured	70
ATF2	Design	37
ATF2 pushed	Proposed	<26
ILC	Design	6
CLIC 500GeV	Design	3

Does tuning difficulty scale as $\sigma_y^{*^{-1}}$? Both ILC and CLIC need as low ATF2 σ_y^* as possible. What is the minimum achievable σ_y^* in ATF2?

Sha and Philip's first β_y scan

Rogelio Could we push a bit more?

On-going optimization with MAPCLASS

Sha is still looking into further improvements... García

Rogelio Tomás

```
values
                                          in
                                                ATF2
                                                              p.6/17
Exploring
             ultra-low
```

Some tracking for β_y =0.025mm

Tuning versus β_y

A 0-th order tuning algorithm based on the Simplex:

- Observables: σ_x and σ_y at IP.
- Variables: Magnet strengths, x, y and tilt displacements.
- Code: PLACET-Octave
- Ingredients:
 - realistic errors
 - ground motion
 - convergence reached when $\sigma_y < X$ for 3 measurements, or maximum number of iterations.
- We try this on the Nominal and $\beta_y/2$ cases.

Simulation ingredients

Errors:

- H & V misalignments with $\sigma = 30 \mu m$.
- Transverse roll with $\sigma = 30\mu$ rad (too low, sorry)
- Relative strength error with $\sigma = 10^{-4}$.
- Measurement error of σ_y , $\sigma=2$ nm.

Missing ingredients:

- Beam jitter
- Mover step size
- (which could become the limiting factors!)

Initial σ_y for 150 seeds

Up to $4\mu m$ of initial σ_y .

Number of iterations for $\beta_y = 0.1$ mm

Below 8000 iterations required.

Number of iterations for $\beta_y = 0.05$ mm

Below 12000 iterations required but maximum is hit. More iterations are required for lower β .

Final σ_y for $\beta_y=0.1$ mm

Final σ_y between 37 and 44nm.

Final σ_y for $\beta_y = 0.05$ mm

Some seeds fail to finish between 30 and 37nm and one seed even stops at 53nm!! More sophisticated tuning algorithms are required for lower β (which Glen or Yves might already have). Tomás García (which Glen or Yves might already have).

p.14/17

Remarks

- $\sigma_y \approx 20$ nm has been reached in design respecting magnet powering and aperture constrains in ATF2.
- Shintake monitor has a measuring range between 25nm and $5\mu m$, just a bit offside.
- However reducing β_x might increase halo at Shintake monitor.
- New larger superconducting quadrupoles could fix this problem,
- or beam could be collimated.
- Further studies are required.

- Lower β^* increases tuning difficulty
- ATF2 is the unique chance to learn how difficulty scales with σ_y in a real machine
- Tuning simulations are required: more realistic and sophisticated algorithms.
- Hope that within the framework of the new open collaboration a wealth of simulations is produced.
- A web page is being set-up to ease communication

References

[1] S. Bai and P. Bambade, "Intermediate beta configurations at the IP for commissioning and optimisation" in the Fifth ATF2 project meeting: http://atf.kek.jp/collab/md/projects/project_frame.php?project_page=1 and

M. Thorey, P. Bambade, "ATF2 variable β_{IP} parameters", LAL/RT 07-05: http://publication.lal.in2p3.fr/2007/lalrt0705.pdf

 [2] R. Tomás, "MAPCLASS: a code to optimize high order aberrations" CERN AB-Note-2006-017 (ABP), and "Non-linear Optimization of Beam Lines", Phys. Rev. ST Accel. Beams 9, 081001 (2006).

http://prst-ab.aps.org/abstract/PRSTAB/v9/i8/e081001

[3] P. Tenenbaum "Expanded Studies of Linear Collider Final Focus System at the Final Focus Test Beam", SLAC-R-475:

http://www.slac.stanford.edu/pubs/slacreports/slac-r-475.html

- [4] "CLIC parameters" 2008, to be published.
- [5] ILC Reference Design Report: http://lcdev.kek.jp/RDR/
- [6] D. Schulte, "Beam-Beam Simulations of the Proposed ILC Parameters", EUROTeV-Memo-2005-004-1.
- [7] B. Parker, "Superconducting Final Focus for ATF2" at the Fifth ATF2 project meeting: http://ilcagenda.linearcollider.org/conferenceDisplay.py?confId=1806
- [8] Y. Honda et al, "Shintake BSM and gamma detector" at the Fifth ATF2 project meeting: http://ilcagenda.linearcollider.org/conferenceDisplay.py?confId=1806