Experimental procedure for IP beta-tuning / transport at 3 IP waists

Sha BAI
ATF2 Software Review workshop

18 June 2008

Variable $\beta_{\mathrm{x}, \mathrm{y}}$ at longitudinally displaced IP

Beam size at focal point is a function of choice of FD effective focal length (L*) and injected beam matching
\rightarrow L* adjusted by FD strength
\rightarrow injected beam adjusted by
QM12,13,14,15,16

During commissioning, Honda monitor and wire scanner at displaced IP, respectively at -54 cm and +39 cm , with resolutions of $300-1000 \mathrm{~nm}$.

Honda Monito
$(-540 \mathrm{~mm}$ from IP)
Carbon Wire:
(+390mm from IP)

350nm-1 micron
>1 micron

Study on shifted IP+0.39m and IP-0.54m:

A. for IP-54cm, use the following procedure to get the focal point:

1) Use QM12~16 to obtain:
$\beta_{x}=4 \times \beta_{x \text { nominal }} \beta_{y}=4 \times \beta_{y n o m i n a l}$
at the nominal IP.
2) Replace $Q M 12 \sim 16$ values obtained in 1) into files and fit QD, QF to obtain $\alpha_{x}=\alpha_{y}=0$ at the nominal IP. at IP displaced by 54cm (not converged, because it's nonlinear)
3) do it step by step:
each time use QD, QF values obtained in last iteration.

Example: start from initial IP with $\beta x=4 \times \beta_{\text {xnominal }}=0.016 \mathrm{~m}, \beta y=4 \times \beta_{y n o m i n a l}=0.0004 \mathrm{~m}$

- IP-0.1m :
$\beta \mathrm{x}=0.015 \mathrm{~m}, \beta \mathrm{y}=0.0003 \mathrm{~m}$
- IP-0.2m :
$\beta \mathrm{x}=0.014 \mathrm{~m}, \beta \mathrm{y}=0.00027 \mathrm{~m}$
- IP-0.3m :
$\beta x=0.013 \mathrm{~m}, \beta \mathrm{y}=0.0002 \mathrm{~m}$
- IP-0.4m :
$\beta x=0.012 \mathrm{~m}, \beta \mathrm{y}=0.00013 \mathrm{~m}$
- IP-0.54m :
$\beta \mathrm{x}=0.004 \mathrm{~m}, \beta \mathrm{y}=0.0001 \mathrm{~m}$

4) fit all the five sextupoles to get:
$\mathrm{T} 126=0, \mathrm{~T} 122=0, \mathrm{~T} 346=0, \mathrm{~T} 342=0, \mathrm{~T} 166=0$
$80 \times \beta_{\text {ynominal }}$ at IP-54cm can be obtained by rematching...
Linear optics $\beta \mathrm{x}=0.004 \mathrm{~m}, \beta \mathrm{y}=0.008 \mathrm{~m} \rightarrow \sigma \mathrm{y}=307 \mathrm{~nm}$

$100 \times \beta_{\text {ynominal }}$ at IP-54cm:

Linear optics $\beta \mathrm{x}=0.004 \mathrm{~m}, \beta \mathrm{y}=0.01 \mathrm{~m} \rightarrow \sigma \mathrm{y}=340 \mathrm{~nm}$

B. for the IP+39cm, use the following procedure to get the focal point:

1) use the nominal values of QM12~16 and fit QD0, QF1 in final doublet to obtain $\alpha_{x}=\alpha_{y}=0$.
KLQDOFF $=-1.117399 \mathrm{E}+00$
KLQF1FF $=7.030126 \mathrm{E}-01$
2) fit QM12~16 to get:
$\beta_{\mathrm{x}}=0.04 \mathrm{~m}, \beta_{\mathrm{y}}=0.08 \mathrm{~m}$
$D_{x}=0, \alpha_{x}=\alpha_{y}=0$
at $\mathrm{P}+39 \mathrm{~cm}$.
3) fit all the five sextupoles to get:
$\mathrm{T} 126=0, \mathrm{~T} 122=0, \mathrm{~T} 346=0, \mathrm{~T} 342=0, \mathrm{~T} 166=0$
do tracking to get $\sigma_{y}=968 \mathrm{~nm}$ at $\mathrm{IP}+39 \mathrm{~cm}$.

$800 \times \beta_{\text {ynominal }}$ at IP+39cm:

Linear optics $\beta \mathrm{x}=0.04 \mathrm{~m}, \beta \mathrm{y}=0.08 \mathrm{~m} \rightarrow \sigma \mathrm{y}=971 \mathrm{~nm}$

$1000 \times \beta_{\text {ynominal }}$ at IP $+39 \mathrm{~cm}:$

Linear optics $\beta x=0.04 \mathrm{~m}, \beta \mathrm{y}=0.1 \mathrm{~m} \rightarrow \sigma \mathrm{y}=1086 \mathrm{~nm}$

Twiss of the three cases: nominal, $100 \beta_{y}$ at IP-54cm, $800 \beta_{y}$ at IP +39 cm

Orthogonal waist scans:

$$
\begin{aligned}
&\binom{\Delta f_{x}}{\Delta f_{y}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{\delta_{Q D}}{\delta_{Q F}} \\
& M \\
& \rightarrow \quad\binom{\delta_{Q D}}{\delta_{Q F}}= M^{-1}\binom{\Delta f_{x}}{\Delta f_{y}}
\end{aligned}
$$

Nominal IP:

$$
M=\left(\begin{array}{ll}
2.57 & -16.8 \\
-1.680 .24
\end{array}\right) \rightarrow \quad M^{-1}=\binom{-0.0087-0.6085}{-0.0609-0.0931}
$$

IP+39cm:

$$
M^{-1}=\binom{-0.0087-0.418}{-0.0522-0.0741}
$$

IP-54cm:

$$
M^{-1}=\binom{-0.0076-1.3027}{-0.0746-0.1438}
$$

For different β, M remains the same.

The fractional quadrupole strength $\delta_{Q D, Q F}$ are in parts per thousand, and the longitudinal waist motions $\Delta f_{x, y}$ are in meters.

Without errors
With errors
The same for $X!$

$$
\begin{aligned}
& \Delta f_{x}=0 \quad \rightarrow \quad\binom{\delta_{Q D}}{\delta_{Q F}}_{y}=M^{-1}\binom{0}{\Delta f_{y}} \\
& \Delta f_{y}=0 \quad \rightarrow \quad\binom{\delta_{Q D}}{\delta_{Q F}}_{x}=M^{-1}\binom{\Delta f_{x}}{0}
\end{aligned}
$$

Get waist in each plane !

conclusions \& prospects

1. We can get any β_{y} at nominal IP in range [$0.25,1000$] * nominal value
2. At displaced IP-0.54m and IP+0.39m, β_{y} can be as large as is needed for the linear beam size to match the resolutions of the Honda monitor and wire-scanner, while preserving the basic features of the FFS optics
3. orthogonal waist scans can be expected to imply at different IP locations which can get waist in both planes
