FFS tuning with pre-calculated optical multi-knobs¹

Philip Bambade Yves Renier

Laboratoire de l'Accérateur Linéaire (LAL) http://flc-mdi.lal.in2p3.fr/

ATF2 Software Workshop 18 june 2008

¹Based on proceeding proposed at EPAC08 "Feedback Corrections for Ground Motion Effects at ATF2"

Guidelines

- Effect of Magnet Displacement on the beam size at IP
- 2 Method of correction
- 3 steering correction
- 4 Steering correction results at ATF
- 5 Simulation of optical corrections
- 6 Results of simulation
- Conclusion and prospects

(日)

Effect of Magnet Displacement on the beam size at IP

Steering is mainly due to :

- Quadrupoles displacements
- Sextupole displacement
- Propagation along the line

Effect of Magnet Displacement on the beam size at IP

Steering

Steering is mainly due to :

- Quadrupoles displacements
- Sextupole displacement
- Propagation along the line

Effects of magnets displacements

- Displacement of a quadrupole or a sextupole kick the beam
- Kick is proportional/quadreatic to the displacement and the magnet strength

(日)

Steering

Steering is mainly due to :

- Quadrupoles displacements
- Sextupole displacement
- Propagation along the line

Propagation

- A kick α at point A is converted in displacement at a downstream point B according to the phase advance (betatron oscillation).
- Amplitude of the displacement is given by : R₁₂(A → B) × α_x or R₃₄(A → B) × α_y
- Big beta functions \Rightarrow big R_{12} and R_{34}

Focusing errors

Focusing errors move the waist and so increase size at IP.

Focusing errors come from :

- Horizontal displacement of the beam in sextupoles.
- Mismatch of twiss parameters at injection in EXT line.

Horizontal displacement in sextupoles

- Horizontal displacement in a sextupole focuses the beam.
- Focusing is proportional to the displacement and the sextupole strength.

Mismatch

Mismatch at injection of $\alpha_x, \alpha_y, \beta_x$ or β_y will propagate until the end of the line.

Focusing errors

Focusing errors move the waist and so increase size at IP.

Focusing errors come from :

- Horizontal displacement of the beam in sextupoles.
- Mismatch of twiss parameters at injection in EXT line.

Horizontal displacement in sextupoles

- Horizontal displacement in a sextupole focuses the beam.
- Focusing is proportional to the displacement and the sextupole strength.

Mismatch

Mismatch at injection of $\alpha_x, \alpha_y, \beta_x$ or β_y will propagate until the end of the line.

Focusing errors

Focusing errors move the waist and so increase size at IP.

Focusing errors come from :

- Horizontal displacement of the beam in sextupoles.
- Mismatch of twiss parameters at injection in EXT line.

Horizontal displacement in sextupoles

- Horizontal displacement in a sextupole focuses the beam.
- Focusing is proportional to the displacement and the sextupole strength.

Mismatch

Mismatch at injection of $\alpha_x, \alpha_y, \beta_x$ or β_y will propagate until the end of the line.

Effect of Magnet Displacement on the beam size at IP

Coupling and vertical dispersion

As $\sigma_x \simeq 100 \times \sigma_y$ even weak coupling can increase a lot σ_y .

Coupling come from :

- Vertical displacement of the beam in sextupoles.
- Inperfect coupling correction in the ring.

Vertical displacement in sextupoles

- Vertical displacement in a sextupole kickes the beam in y.
- Kick is proportional to the displacement, the sextupole strength and horizontal particle coordinate.

Vertical dispersion

Coupling in a dispersive region \Rightarrow vertical dispersion

Effect of Magnet Displacement on the beam size at IP

Higher order aberation effects

- To obtain 35nm beam size :
 - Cancel second order aberations
 - Minimize third order
- Done in design creating symetries and respecting precise relations between the sextupoles of the Final Focus (FF).
- Before-mentioned errors break these relations ⇒ High order aberations can have large effects on the beam size.

Parameters and measurements

What can be measured ?

- Beam position at BPM locations (each pulse or average).
- Beam size at wire scaners and OTR locations, at IP with Shintake monitor, Honda Monitor, or wire scaner.

What parameters can be changed ?

- Strength of magnets and correctors.
- Position of magnets which are on movers.

(日)

Obtain response matrix

For a variation ΔP_i of a parameter *i*, in a linear approximation, the variation of all the measurements is written in a vector ΔV_i . The *M* response matrix defined by :

$$M = \left[\left(\begin{array}{c} \Delta V_1 \\ \Delta P_1 \end{array} \right) \left(\begin{array}{c} \Delta V_2 \\ \Delta P_2 \end{array} \right) \quad \dots \end{array} \right]$$

give the variation of all the measurements ΔV for a variation ΔP of all parameters. Obtained from model or experimentally.

$$M \times \Delta P = \Delta V$$

Invert response matrix

Once we get ΔV the difference between measurements and what is wanted, the correction ΔP is given by :

$$\Delta P = M^{-1} \times \Delta E$$

The response matrix is usually not square (*m* parameters *n* measurements) \Rightarrow Use SVD to invert it.

Thanks to SVD

- If m < n the correction will minimize the spread of the measurements (|| ΔE ||).
- If m = n Simple inversion ("1 to 1").
- If m > n the correction will minimize the amplitudes of corrections (|| ΔP ||).

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Invert response matrix

Once we get ΔV the difference between measurements and what is wanted, the correction ΔP is given by :

$$\Delta P = M^{-1} imes \Delta E$$

The response matrix is usually not square (*m* parameters *n* measurements) \Rightarrow Use SVD to invert it.

Thanks to SVD

- If m < n the correction will minimize the spread of the measurements (|| ΔE ||).
- If m = n Simple inversion ("1 to 1").
- If m > n the correction will minimize the amplitudes of corrections (|| ΔP ||).

Obtain knobs and correct aberation

The *ith* column of *M*⁻¹ is called a knob for the *ith* measurement :

It gives the variation of the parameters (ΔP) to obtain an unitary variation of this measurement and this one only.

- Correlations introduced by aberation at IP can only be measured through the evolution of the size varying this correlation.
- Parabola given by size function of the amplitude of parameters accordingly to the corresponding knob has its minimum when correlation is null.
- Correcting aberation is done by scanning amplitude of the knob and set correctors to the minimum of the parabola

(日)

Example of waist correction

correction of α_x

• The knob for $\alpha_x(\langle x_p x \rangle)$ is :

$$K = \begin{bmatrix} dQD0_{strength} \\ dQF1_{strength} \end{bmatrix} = \begin{bmatrix} -5.28 \ 10^6 \\ 4.33 \ 10^5 \end{bmatrix}$$

 To correct α_x, one has to vary the QD0 and QD1 strength by a × K choosing a to have reasonable size variation.

• Here
$$a = [0 - 2.10^{-8} - 1.10^{-8} 1.10^{-8} 2.10^{-8}].$$

• See Sha's talk for futher information on waist correction.

(日)

Example of waist correction

Example of waist correction

Example of waist correction

Implementation of "1 to all" algorithm

- Get BPM readings of the perfect line B_0 (\simeq get transfer matrix).
- For each corrector i, apply an unitary correction. B are values of BPM readings.

 $B_i - B_0$ is a vector proportional to the correction (linear approximation).

- Set $B_i^{-1} = (B_i B_0)^{-1}$ SVD-invert of this vector. It allows to have the measure of what should have the value of the corrector to have such displacement of the beam.
- For a corrector i, apply the correction C_i given by $C_i = -\alpha(B_{exp} B_0) \times B_i^{-1}$ where B_{exp} is the "experimental" BPM measurements.

Steering correction results at ATF

BPM readings before steering correction

Steering correction results at ATF

BPM readings after just 1 correction

Steering correction results at ATF

Evolution of steering during correction

(日)

Implementation of optical corrections

- Get the main correlations D₀ introduced by the perfect line at the IP. (~ get transfer matrix).
- Look for ways to introduce it (sextupole displacement, variation of strength of quadrupole or sextupole)
- For most efficient way found, get the values D_i of the correlations of the beam at IP introduced by an unitary perturbation of the magnet.
- Get D^{-1} , invert of matrix made by $D_i D_0$.
- Vector of D⁻¹ are the knobs that change an unique correlation.
- Use the knobs one by one as shown before to make the correction.

A D > A P > A D > A D >

• QD0 and QF1 are used for α_x and α_y correction.

$$\begin{bmatrix} < xx' > \\ < yy > \end{bmatrix} = \begin{bmatrix} -1.49 \ 10^4 & -5.35 \ 10^6 \\ 5.70 \ 10^4 & 4.39 \ 10^5 \end{bmatrix} \times \begin{bmatrix} dK_{\text{QD0}} \\ dK_{\text{QD1}} \end{bmatrix}$$

• SF6, SD4, SF1 and SD0 are used to correct other aberations.

$$\begin{bmatrix} \langle x'y \rangle \\ \langle Ey \rangle \\ \langle x'x'y \rangle \\ \langle x'Ey \rangle \end{bmatrix} = \\ \begin{bmatrix} 2.84 \ 10^{12} & -1.40 \ 10^{12} & 4.27 \ 10^{15} & 6.50 \ 10^{16} \\ 1.26 \ 10^{12} & 1.08 \ 10^{12} & -1.78 \ 10^{15} & -2.67 \ 10^{16} \\ 1.58 \ 10^{12} & -2.29 \ 10^{11} & 8.05 \ 10^{15} & -2.96 \ 10^{16} \\ 1.81 \ 10^{12} & -2.42 \ 10^{11} & 2.72 \ 10^{15} & -3.67 \ 10^{16} \end{bmatrix} \times \begin{bmatrix} dy_{SF6} \\ dy_{SD4} \\ dy_{SP1} \\ dy_{SD0} \end{bmatrix}.$$

Simulation of optical corrections

Location of SF6 SD4 SF1 and SD0

Simulation in PLACET

- Initial displacement generated by 11.5 days ground motion.
- Steering correction each second.
- Size measurement are 90 s long (Shintake monitor).
- 20 seeds for the ground motion generator fitted on measurement at KEK. (cf: "Expected ground motion at ATF2 and resulting effects at IP" at Fifth ATF2 Project meeting)
- 100 nm of resolution on BPM (7 nm on IPBPM)

Main correlation at IP before correction

Results for a seed

Results for an other seed

correction of correlation after 11.5 days (seed 9)

22/25

Correlation at IP after correction

Size at IP before and after correction

Conclusion and prospects

Conclusion and prospects

Conclusion :

- Stable and efficient steering correction obtained.
- "1 to all" steering algorithm tested with success in Flight Simulator at ATF.
- Main distortions of the beam at IP are corrected by the knobs found.
- Quick correction : 45 min long for 1 iteration of correction.
- Beam size down to 40-60 nm.
- Prospects :
 - Introduce other effects (beam injection jitter, magnets power supply, magnets rotation, ...).
 - Add IP beam stability feedback (previously optimized).
 - Test a second iteration of beam correction on biggest beam (~ 60 nm).
 - Interface optics correction with Flight Simulator.

A D > A P > A D > A D >