Integrated ATF2 Dynamic Tuning Simulations

Glen White, LAL/SLAC ATF2 Software Workshop June 2008

Simulation overview.

- Tuning for 37nm IP vertical beam size.
- Dynamic stability.
- Further work and FS integration.

Overview

- Make a detailed dynamic simulation of ATF2 alignment and tuning steps to assess feasibility of getting and maintaining ~37nm spot size when considering all error sources.
- All simulations in Matlab with Lucretia.
- Try and include all tuning steps after initial commissioning (ie beam gets to end of beamline).
- Review further work and steps towards Flight Simulator integration.

Error Parameters

- Errors are normally distributed with mean=ref. orbit and quoted standard deviations.
- EXT BPM alignment not directly modeled yet, assume 10um quad-bpm alignment here.
- Model for SM measurement: mean spot size from 90 consecutive pulses +/- 2nm RMS error.
- Poisson-calculated multipole errors in FFS dipoles.
- Measured final quad doublet errors available, not in simulation yet

x/y/z alignment errors	200 um
Quad, Sext / Bend roll alignment	300 urad
Initial BPM-magnet field center alignment	30 um
dB/B for Quad, Sexts	1e-4 syst. + 1e-4 random
Mover step size (x & y)	50 nm
BPM resolutions	100 nm
Power supply resolution (not included in this simulation as shown)	20 (FFS)/11 (EXT) bit
Shintake Monitor Resolution	2nm (+ dyn. Err cont.)

Dynamic Errors

- RMS pulse-pulse errors:
 - Component jitter: 25 nm.
 - Energy error: 1E-4.
 - Ring extraction jitter: 0.1 sigma (x,x',y,y').
- Pulse-pulse feedback using FFS FB + EXT steering algorithm.
- Ground motion: use modified model K from ATF measurements:

Ground motion ATF. Tentative version					K model
'Parameter A of the ATL law,	Α [[m**2/m/s]	۲	1.00000E-17	
'Parameter B of the PWK,	В [[m**2/s**3]	۲	5.00000E-18	
'Frequency of 1-st peak in PWK,	f1	[Hz]	T	1.60000E-01	
'Amplitude of 1-st peak in PWK,	al	[m**2/Hz]	T	4.00000E-13	1.00000E-11
'Width of 1-st peak in PWK,	d1	[1]	•	5.00000E+00	
'Velocity of 1-st peak in PWK,	v1	[m/s]	T	1.0000E+03	-1.0000E+03
'Frequency of 2-nd peak in PWK,	f2	[Hz]	T	2.50000E+00	
'Amplitude of 2-nd peak in PWK,	a2	[m**2/Hz]	T	3.00000E-15	1.00000E-15
'Width of 2-nd peak in PWK,	d2	[1]	T	3.00000E+00	
'Velocity of 2-nd peak in PWK,	v2	[m/s]	T	3.00000E+02	-4.0000E+02
'Frequency of 3-rd peak in PWK,	f3	[Hz]	T	9.00000E+00	
'Amplitude of 3-rd peak in PWK,	a3	[m**2/Hz]	T	3.00000E-17	1.00000E-17
'Width of 3-rd peak in PWK,	d3	[1]	T	2.80000E+00	
'Velocity of 3-rd peak in PWK,	v3	[m/s]	T	2.50000E+02	-4.0000E+02

Pulse-Pulse Feedback

- Use pulse-pulse feedback to get initial beam orbit through EXT and FFS and maintain orbit when GM drifts added.
- FFS FB/EXT FB gain ration 10/1 (orbit stability most important in FFS).
- EXT feedback "least-squares matrixinversion" steering using all correction magnets (ZV*X & ZH*X) and quad BPMs.
- FFS feedback 2 kicker-BPM pairs for x & y feedback at 90-degree phase separations.

IP Beamsize Measurement

- Shintake monitor measurement range 35nm – 350nm.
- □ Wirescanner for >1 micron waist sizes.
- Between 350nm and ~1um, 'Honda Monitor'.
- In this simulation, just use Shintake monitor resolution- when using sextupole knobs, arrive in SM range quickly (1 or 2 iterations usually).

Tuning Procedure Overview

- □ Use EXT correctors + BPMs (EXT FB) to get orbit through EXT.
- Use FFS FB to get beam through FFS.
- Correct Dy/Dy' in EXT using skew-quad sum knob.
- Correct coupling in EXT using coupling correction system.
- Use FFS FB for launch into FFS.
- □ FFS Quad BPM alignment using quad shunting with movers.
- FFS Quad mover-based BBA.
- FFS Sext BPM alignment using Sext movers and downstream BPMs.
- Sextupole mover tuning knobs to get final spot size
 - Vertical IP dispersion and Waist
 - <x'y> coupling
 - Higher order terms collectively through Sext rolls + dK.
- □ Also use EXT skew-quads to tune other coupling terms.

Simulation Notes

- Ideal simulation includes tracking every bunch, including inter-pulse jitter effects on IP size measurement (90 pulses per measurement).
- This takes a LONG time with macro-particle bunches.
- Simulation includes GM effects (ie. 90 / 1.5Hz GM added for every IP size measurement).
- Effect of fast jitter during 90 pulse IP size measurement is modeled as effective degradation of IP measurement resolution.
- For dynamic errors studied here, pulse-pulse jitter effects add 1.3nm (in quadrature) to 2nm SM measurement (giving res. ~2.4nm).

Beam Model

- Lucretia beam models:
 - Sparse' := 2nd order moment tracking in transverse
 - 'Macro-particle':= better for handling higher-order effects- non-Gaussian beam. Slower.

- Tracking through perfect lattice (100 generated bunches)
 - Sparse beam gives 35.0 nm
 - IP beam non-Gaussian, higher-order effects important as well as measurement of beam size.

EXT Tuning Results

- With an error-free FFS, tune EXT with 10K and 80K macro-particle beams (100 seeds).
- Median results the same.
- Probably ok to do full tuning with 10K bunch with same perfectlattice performance as the mean 100K-case.
- Use 10K bunch for simulation results shown in this talk.

Quad & Sext BPM Alignment

RMS alignment of Magnet field centre – electrical centre of magnet BPMs (100 seeds).
 Blue = x Red = y.

Beamsize after BBA

 IP waist size before sextupole FFS tuning knobs applied (100 seeds).

- IP spot size vs. # of pulses (assuming 90 pulses per IP size measurement).
- Fast convergence <100nm (after fixing waist + dispersion).</p>

- Min IP waist size achieved vs. pulse #
- Mean and +/- 1 sigma plotted from 100 seeds.
- Red = static, blue = dynamic.

Tuning Results Time to best result Time to <10% of best result Seeds tune slower than x-axis value % Seeds tune larger than x-axis value Ż Time / days Tuned Vertical IP Waist / nm

- Best achieved vertical waist size for 100 seeds (left)
- Time taken to converge on best waist size, and time to converge within 10% of best waist size (right)

Final Quad Mover Positions

- Position of Quad Magnet Movers after tuning.
- x/y moves ~<2mm possible, but have to take into account map of x,y,roll phase space.</p>
- Need to check don't try to move outside this phase space.

Final Sextupole Mover Positions

x/y positions of Sext movers after tuning.

Final Sextupole Mover Rolls

□ Final roll positions of sextupole movers.

Magnet movers in tuning code

- Include mover limits in tuning algorithms
 - Stop simulation if mover attempts to break limit
- 100 seeds 28 failed due to mover limits
 - 14 during initial steering
 - 10 during BPM-quad alignment
 - 4 during the final sextupole tuning
- The 4% failure for sext tuning may ignored as negligible
 - These could be fixed by realigning the machine.
- 24% failure during initial steering and alignment <u>not</u> negligible
 - Must alter algorithms
 - Tighter constraints on magnet motion?

'Nominal' Jitter Parameters

- o.1 sigma x,x',y,y' RMS ring extraction jitter
 - 13 um/2.8 urad (x/x') 0.6 um/0.4 urad (y/y')
- 1e-4 dE/E error
- 10 nm magnet vibration
- 1e-4 strength errors pulse-pulse on corrector magnets
- 100 nm BPM resolution
- ATF fitted GM model
- Simulation performed with 100 random seeds

IP Motion

- 20,000 pulses @ 1.56 Hz (1 seed)
- IP vertical position drifts around on scales of a few 100 nm an hour.
- Slow enough that this can be 'de-trended' using Shintake Monitor as IP position monitor.

Beam Size Growth

Long – Timescale Performance

At each point, none, linear (waist, dispersion and coupling) and full tuning knobs (include sextupole strength and tilt scans) applied. For blue, red and black respectively.

Vertical IP beam size over 2 week period
Mean and +/- 1 sigma RMS from 100 seeds shown at each point

Most Important Jitter Sources

- Final Focus Magnet vibrations and jitter of EXT corrector magnetic field
- Expected jitter from 'Nominal' Parameters = ~35 nm RMS pulse-pulse

Jitter Source Concerns

- □ From Shintake BSM group:
 - 2nm IP measurement resolution with ~30nm jitter between laser fringe and beam
- 10nm expected jitter from laser
- BUT expect >~35nm for beam from jitter sources studied here... Need IP beambased multi-bunch feedback?
- Only 11-bit corrector PS's in EXT line?
 - I-bit of noise= 1e-3 fluctuation of corrector, not 1e-4 as in 'nominal' jitter source set simulated here.
 - Means 110nm IP jitter!

BSM Measurement Simulation

- EXT BBA
 - simulation needed
- FFS BBA
 - Simulation and FS code exists for Quad shunting
 - Simulate and compare ballistic alignment/DFS
- EXT Disp. Correction
 - Effects of DR freq. ramp other than E sweep?
 - Need EPICS interface to DR freq. Ramp to include in FS.
- EXT/FFS Steering/ Feedback
 - Need global Feedback FS code (all feedbacks) Glen White

- EXT coupling correction.
 - Add wirescanner errors to simulation
 - Need EPICS wirescanner interface for inclusion into FS.
- Add more realistic constraints to sim
 - Respect apertures
 - Radiation monitoring during BBA.
- Model Effects on tuning of jitter sources with medium-length timescales
 - few mins drift of water temp etc

Final Tuning Procedure

- Need to improve on simulations (method)look at other methods in integrated simulation environment, proper comparison of different techniques...
- Better % of seeds closer to tuning goal, faster convergence rate (better tuning algorithm)
- Understand and include BSM measurement analysis
- Alter procedures to fix cases where magnet movers go out of range
- Jitter conditions look too bad?
- FS inclusion needs IP monitors in EPICS

- IP multi-bunch feedback to mitigate IP beam jitter for BSM measurement
 - Feasibility study
 - When would hardware to do this be available
 - Who could do this?