A user's first-time Flight Simulator experience at ATF in May

Philip Bambade (LAL), Yves Renier (LAL)
Glen White (SLAC)

Laboratoire de l'Accérateur Linéaire (LAL) http://flc-mdi.lal.in2p3.fr/

ATF2 Software Workshop 19 june 2008

A user's first-time Flight Simulator experience at ATF in May

- How make an algorithm in Flight Simulator (FS)
 - Requirements
 - Simulation of the algorithm
 - Implement communication with FS
 - Test the algorithm interfaced with FS
 - Create interface for FS
- Case of steering correction at ATF
- 3 Conclusion

Requirements

Network communication

Before coding anything, one must be sure there is a possibiliy to interface the software he'll use with TCP/IP networking.

What in TCP/IP is required

- Creating socket connections for TCP communication.
- Ascii transfert.

Some tracking softwares known to be ok

- Lucretia (using Java included in Matlab). TESTED
- PLACET (using Tcl). TESTED
- MAD should work (using M.Woodley routines to control MAD trought Matlab). NOT TESTED
- SAD includes TCP/IP communication. NOT TESTED

How make an algorithm in Flight Simulator (FS)
Requirements

GUI

Other people will want to use your code. A GUI is "easy" to set up and needed by your colleagues to understand what you made.

What in GUI is required

- Buttons, checkbox, radio button, . . .
- Interaction with your code.

Some tracking softwares known to be ok

- Lucretia (using GUI toolbox). TESTED
- PLACET (using Tcl/Tk). TESTED
- Should be possible with MAD (using M.Woodley routines to control MAD trought Matlab). NOT TESTED
- Should be possible with using Tkinter.NOT TESTED

How make an algorithm in Flight Simulator (FS)

Requirements

Read AML

The Flight Simulator will give an "updated" status of the machine in AML format.

UAP can help you

- UAP is a library to make parsers from a code to AML and from AML to a code.
- Several codes has already parsers.

Some tracking softwares known to be ok

- Lucretia using AML2Lucretia UAP-based. TESTED
- PLACET using AML2Placet UAP-based. TESTING
- MAD using MAD UAP-based parser. NOT TESTED
- SAD creating a parser. NOT TESTED

Simulation of the algorithm

Program your algorithm

Make the algorithm on your tracking code, just like usual.

Tips to improve migration to FS

- Mark variables which will be choosen by user (will appear in GUI).
- Mark functions which simulate reading instrument informations (will be replaced by a FS request).
- Mark functions which simulate setting parrameters of the accelerator like strength or position of magnets (will be replaced by a FS request).

How make an algorithm in Flight Simulator (FS)
Implement communication with FS

Replace read and set functions by FS ask

If your tracking code is not yet interfaced with FS

- Create basic functions to create/destroy socket, send text.
- Use that to create higher level functions to :
 - Ask access to magnets.
 - Read and set magnet strength.
 - Read BPMs, BSMs, ...

Once your tracking code is interfaced with FS

- Replace functions in your algorithm to use the one interfaced with FS instead.
- Some code need to be add (eg. access requests).
- FS will make tracking, update status and intrument informations accordingly to the changes you made.

How make an algorithm in Flight Simulator (FS)

Implement communication with FS

Replace read and set functions by FS ask

If your tracking code is not yet interfaced with FS

- Create basic functions to create/destroy socket, send text.
- Use that to create higher level functions to :
 - Ask access to magnets.
 - Read and set magnet strength.
 - Read BPMs, BSMs, ...

Once your tracking code is interfaced with FS

- Replace functions in your algorithm to use the one interfaced with FS instead.
- Some code need to be add (eg. access requests).
- FS will make tracking, update status and intrument informations accordingly to the changes you made.

How make an algorithm in Flight Simulator (FS)

Test the algorithm interfaced with FS

It should work ... So test it!

Tips to avoid spend many time in testing

- Verify each responce from FS and print error when returned values don't match with expected.
- When you set a parameter of the lattice, verify it changed or wait/resend command.

What to test?

- Reasonable readings from instruments.
- No error printed (unexpected values returned by FS).

How make an algorithm in Flight Simulator (FS)

Create interface for FS

Make the GUI

What is needed in the GUI

- Each option and variable should be configurable through GUI.
- Must be clear : if there is too much options, you can :
 - Make "Next" buttons.
 - Put advanced options in a other windows.
 - Make tabs . . .
- Unfoilding and result of the algorithm should be displayed.
- Error outputs are always useful.

Case of steering correction at ATF

Description of the algorithm

Algorithm was made in PLACET

- "1 on all" and "1 to 1" correction (see yesterday talk).
- Made in Octave (realy near from Matlab language).
- Response matrix determination from model or measurments.
- Succesfully tested.

Implementation of communication with FS

What has been done

- TCP/IP communication made with Tcl (highly inpired from testConnect.cpp from Glen).
- Interface with Octave for high level function was tricky, but done.
- Successfully tested.

Main available functions

- get_bpm_readings(line, bpm_used, average).
- ask_acces(corx_used, cory_used).
- get_corrector_strentgh(correctors) and set_corrector_strentgh(correctors, values).

Make the GUI

A quick done (2-3 H) GUI has been done.

What is in the GUI?

- Choose X or Y correctors used and BPMs.
- Choose type of correction.
- Number of iterations, gain of corrections.
- Response matrix determination type.
- View of BPM readings, differences with previous step, correctors strengths.

Case of steering correction at ATF

Preview of the GUI

Make AML2PLACET

AML2PLACET

- AML2PLACET parser was made with help of A.Latina last summer to give the possiblity to Placet to read AML.
- UAP-based parser (in C++) was chosen since it provides :
 - Structures corresponding to the lattice.
 - AML, MAD, DIMAD and XSIF parsers.

Nevertheless, since last summer, AML syntax has changed! I have to update the parser ...

Flight Simulator in everyday life (simulations)

What is changed compared witout FS

- Realy few changes programming algorithms.
- Use of FS or Lucretia functions (BPM averaging, R matrix computation).
- Slower at the execution (optimisation of the server should correct it).
- Once the GUI has been made, I enjoyed using it:
 - No need anymore to look for a variable in a 300 lines code.
 - No more time lost because a variable has been set to debbug and has never been set back.
 - Quasi-realtime evolution of BPM readings, correctors strength, . . . can be shown in FS.

Flight Simulator controlling ATF

What is changed compared witout FS

- Heady to control ATF from it's own laptop :-D
- Push Ok and take a beer!
- No more lost in options of control system.
- Immediate transition from simulation to experiment (if initialisation to zero of the correctors is avoided).
- Polarity problem of orbit correctors.

Conclusion

- Flight Simulator proved to read BPMs and to set magnet strength.
- Integration of PLACET in FS context succeed.
- SAD and MAD integration should be possible.
- Once Tracking code integrated, little work to implement an existing algorithm.
- One can imediatly operate ATF having never seen the control system.
- With automatisation, time is saved to write repports!

