Jason Abernathy², Klaus Dehmelt³, Ralf Diener³, Jan Engels³, Jim Hunt⁴, Matthias Enno Janssen³, Thorsten Krautscheid¹, Astrid Münnich⁵, Stephen Turnbull⁶, Martin Ummenhofer¹, Adrian Vogel³, Peter Wienemann¹ and Simone Zimmermann¹

1: University of Bonn — 2: University of Victoria — 3: DESY Hamburg 4: Cornell University — 5: TRIUMF — 6: CEA IRFU Saclay

MarlinTPC: Reconstruction Software for Time Projection Chambers

- Introduction
- Current Status:
 - -Digitization/Simulation
 - -Field Distortions
 - -Reconstruction
 - -Analysis
 - -Gear
- Outlook

- 1. Introduction
- 2. Simulation Digitization
- a) Mokka Hits
- b) Electron Cloud
- c) B Distortions
- d) Single Electr.
- e) E Distortions
- f) Ion Disk
- 3. Reconstruction
- a) Last Year
- b) TimePix
- c) Status
- d) TDC
- 4) Other Updates
- a) Analysis
- b) GEAR
- 5) Conclusion Outlook

Introduction

- MarlinTPC is a software tool for TPC studies:
 - Simulation/Digitization
 - Reconstruction
 - Analysis

- 1. Introduction
- 2. Simulation Digitization
- a) Mokka Hits
- b) Electron Cloud
- c) B Distortions
- d) Single Electr.
- e) E Distortions
- f) Ion Disk
- 3. Reconstruction
- a) Last Year
- b) TimePix
- c) Status
- d) TDC
- 4) Other Updates
- a) Analysis
- b) GEAR
- 5) Conclusion Outlook

Introduction

MarlinTPC is a software tool for TPC studies:

116

- Simulation/Digitization
- Reconstruction
- Analysis
- Based on Marlin, LCIO, Gear and LCCD
- Developed in an international effort

- 1. Introduction
- 2. Simulation Digitization
- a) Mokka Hits b) Electron Cloud
- c) B Distortions
- d) Single Electr.
- e) E Distortions
- f) Ion Disk
- 3. Reconstruction
- a) Last Year
- b) TimePix
- c) Status
- d) TDC
- 4) Other Updates
- a) Analysis
- b) GEAR
- 5) Conclusion Outlook

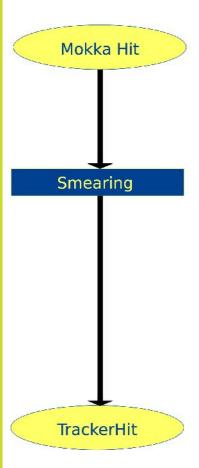
Introduction

- MarlinTPC is a software tool for TPC studies:
 - Simulation/Digitization
 - Reconstruction
 - Analysis
 - Based on Marlin, LCIO, Gear and LCCD
 - Developed in an international effort
 - Highly modular and independent of specific detector, works for:
 - Prototypes and large ILC detector TPCs
 - MICROMEGAS, GEMs and Anode Wires
 - Pad and Pixel (TimePix) readout
 - ADC and TDC read-out electronics

- 1. Introduction
- 2. Simulation Digitization
- a) Mokka Hits
- b) Electron Cloud
- c) B Distortions
- d) Single Electr.
- e) E Distortions
- f) Ion Disk
- 3. Reconstruction
- a) Last Year
- b) TimePix
- c) Status
- d) TDC
- 4) Other Updates
- a) Analysis
- b) GEAR
- 5) Conclusion Outlook

Simulation/Digitization

- Input:
 - Single electrons from detailed simulation (inside MarlinTPC): production, drift, amplification and pulse shaping of electronics
 - Mokka Hits: smearing (+voxel) or -more detailed- electron cloud simulation
- Provides:
 - TrackerRawData for use in reconstruction
 - Read-out specific data
 - Event pile-up
 - Ion backdrift
 - Handling of field distortions

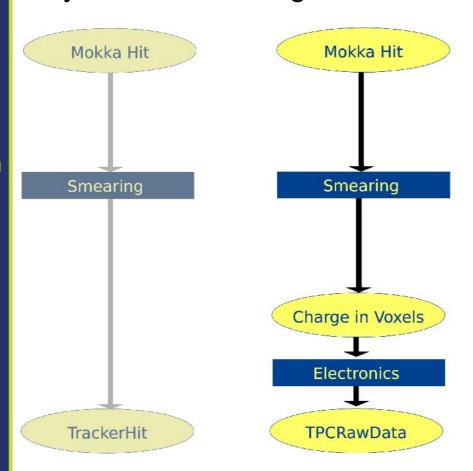


- 1. Introduction
- 2. Simulation Digitization
- a) Mokka Hits
- b) Electron Cloud
- c) B Distortions
- d) Single Electr.
- e) E Distortions
- f) Ion Disk
- 3. Reconstruction
- a) Last Year
- b) TimePix
- c) Status
- d) TDC
- 4) Other Updates
- a) Analysis
- b) GEAR
- 5) Conclusion Outlook

Digitization: Mokka

IIL

Not sufficient


- 2. Simulation Digitization

1. Introduction

- a) Mokka Hits
- b) Electron Cloud
- c) B Distortions
- d) Single Electr.
- e) E Distortions
- f) Ion Disk
- 3. Reconstruction
- a) Last Year
- b) TimePix
- c) Status
- d) TDC
- 4) Other Updates
- a) Analysis
- b) GEAR
- 5) Conclusion Outlook

Digitization: MarlinTPC

• By calculation charge in voxels more realism gained:

- Raw data (ADC counts)

116

- Pad geometry taken into account
- Whole reconstruction chain can be tested / used
- Realistic event pile-up
- Dead or noisy channels can be taken into account

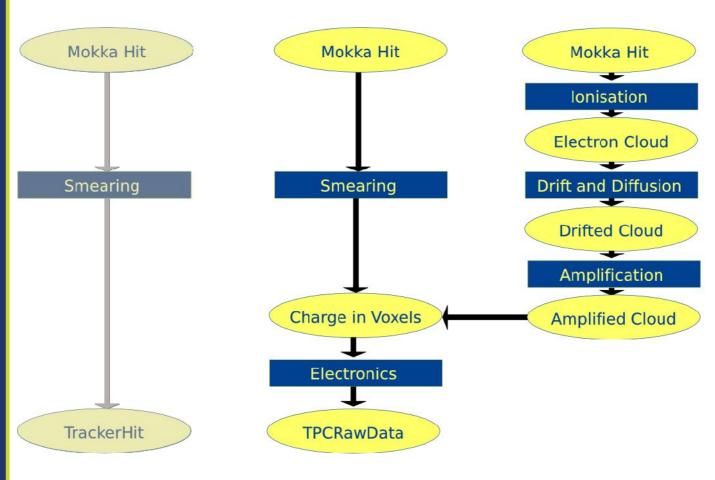
- 1. Introduction
- 2. Simulation Digitization
- a) Mokka Hits b) Electron Cloud
- c) B Distortions
- d) Single Electr.
- e) E Distortions
- f) Ion Disk
- 3. Reconstruction
- a) Last Year
- b) TimePix
- c) Status
- d) TDC
- 4) Other Updates
- a) Analysis
- b) GEAR
- 5) Conclusion Outlook

Ralf Diener. Hamburg University

Digitization: Electron Cloud

- Simulates electron clouds instead of single electrons
- Includes ionization, drifting, GEM amplification and digitization:

- PrimarylonizationProcessor
- ElectronCloudDrifterProcessor
- ElectronCloudGEMAmplificationProcessor
- ElectronCloudChargeDepositProcessor
- SignalShaperGaussianProcessor
- SignalCombinerProcessor
- SignalDigitizerProcessor
- First test were performed with $\sim 500 \text{ m}^{-1}$ (single tracks, no curlers/noise, homogeneous B field):
 - Momentum resolution: $\sigma(1/p_{\tau}) \sim 1.37 \times 10^{-4} (\text{GeV/c})^{-1}$
 - 100% reconstruction efficiency
- Still work to do: too many energy deposits crash program, add support for multiple read-out modules, more testing

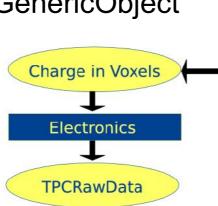


116

1. Introduction

MarlinTPC

- 2. Simulation Digitization
- a) Mokka Hits
- b) Electron Cloud
- c) B Distortions
- d) Single Electr.
- e) E Distortions
- f) Ion Disk
- 3. Reconstruction
- a) Last Year
- b) TimePix
- c) Status
- d) TDC
- 4) Other Updates
- a) Analysis
- b) GEAR
- 5) Conclusion Outlook





- 1. Introduction
- 2. Simulation Digitization
- a) Mokka Hits
- b) Electron Cloud
- c) B Distortions
- d) Single Electr.
- e) E Distortions
- f) Ion Disk
- 3. Reconstruction
- a) Last Year
- b) TimePix
- c) Status
- d) TDC
- 4) Other Updates
- a) Analysis
- b) GEAR
- 5) Conclusion Outlook

Digitization: B-Field Distortions

- Electron cloud package can take into account B field distortions
- Query of the magnetic/electric field at a point in the detector
- B field information can be a map or a parametrized field and is stored in a LCGenericObject
- Global field= sum ofsmaller fields

Amplified Cloud

116

- Electron cloud package can be used in the likelihood fitter:
 - → track fit including distortion correction

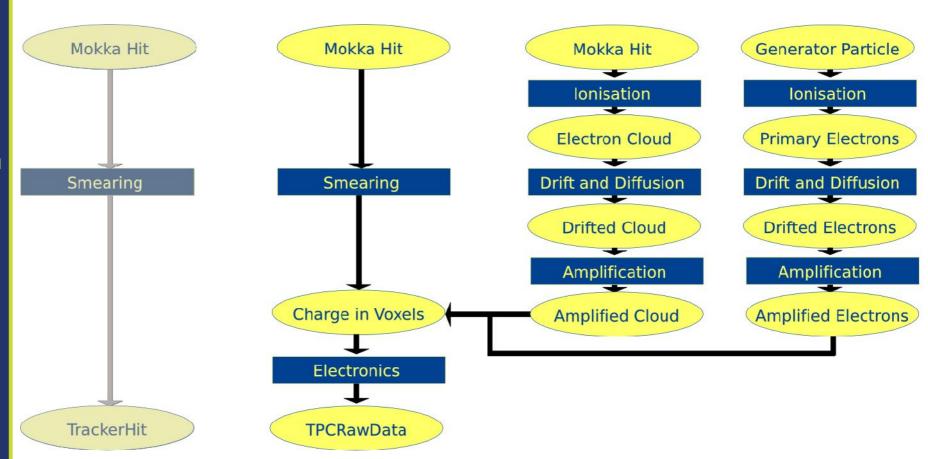
- 1. Introduction
- 2. Simulation Digitization
- a) Mokka Hits
- b) Electron Cloud
- c) B Distortions
- d) Single Electr.
- e) E Distortions
- f) Ion Disk
- 3. Reconstruction
- a) Last Year
- b) TimePix
- c) Status
- d) TDC
- 4) Other Updates
- a) Analysis
- b) GEAR
- 5) Conclusion Outlook

Digitization: Single Electrons Simulation

- Simulation package for detailed studies of a TPC:
- Parameterized deposition of primary electrons (from HEED): realistic clusters, delta electrons...
- Drift of electrons incl. diffusion
- Detailed simulation of amplification and charge transfer in a GEM stack, incl. gain fluctuations and collection / extraction efficiencies: only for specific gas mixtures:
 Currently: P5 (Ar:CH /95:5), P10 (Ar:CH /90:10) and TDP

116

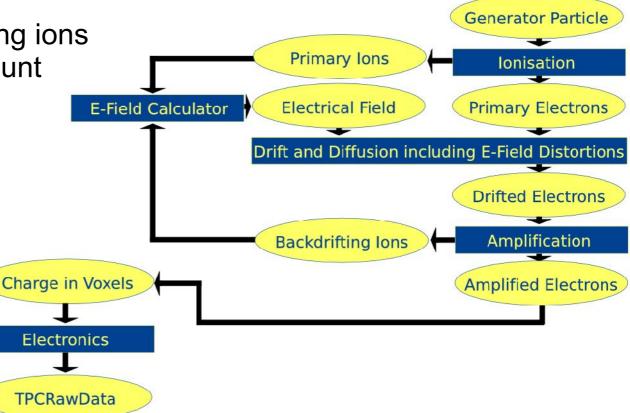
Currently: P5 (Ar:CH₄/95:5), P10 (Ar:CH₄/90:10) and TDR (Ar:CH₄,CO₂/93:5:2)


- Simulation of MICROMEGAS amplification still missing
- Every single primary electron is tracked in the TPC. This should provide data realistic enough for a silicon pixel readout.

- 1. Introduction
- 2. Simulation Digitization
- a) Mokka Hits
- b) Electron Cloud
- c) B Distortions
- d) Single Electr.
- e) E Distortions
- f) Ion Disk
- 3. Reconstruction
- a) Last Year
- b) TimePix
- c) Status
- d) TDC
- 4) Other Updates
- a) Analysis
- b) GEAR
- 5) Conclusion Outlook

Digitization: Single Electrons

116



- 1. Introduction
- 2. Simulation Digitization
- a) Mokka Hitsb) Electron Cloud
- c) B Distortions
- d) Single Electr.
- e) E Distortions
- f) Ion Disk
- 3. Reconstruction
- a) Last Year
- b) TimePix
- c) Status
- d) TDC
- 4) Other Updates
- a) Analysis
- b) GEAR
- 5) Conclusion Outlook

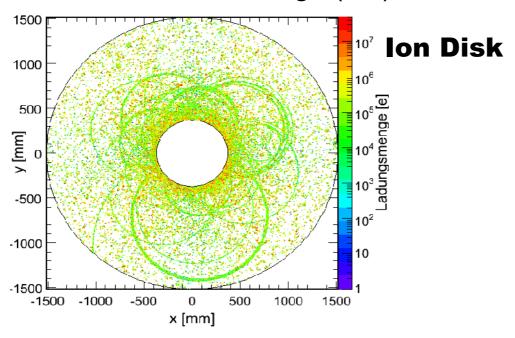
Digitization: E-Field Distortions

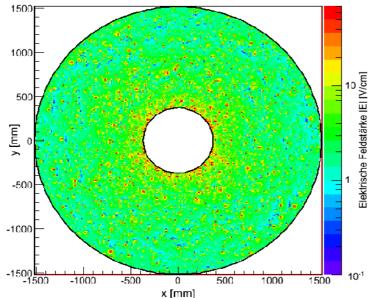
 Single electron drifter can take into account E-field distortions

 Distortions by drifting ions are taken into account

116

 Electron displacement due distortions can be calculated


- 1. Introduction
- 2. Simulation Digitization
- a) Mokka Hitsb) Electron Cloud
- c) B Distortions
- d) Single Electr.
- e) E Distortions
- f) Ion Disk
- 3. Reconstruction
- a) Last Year
- b) TimePix
- c) Status
- d) TDC
- 4) Other Updates
- a) Analysis
- b) GEAR
- 5) Conclusion Outlook


Ralf Diener, Hamburg University

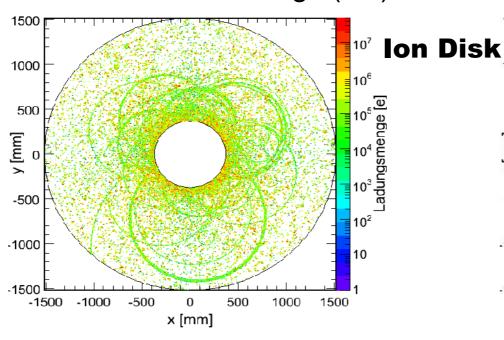
E-Field Distortions due to ILC Background

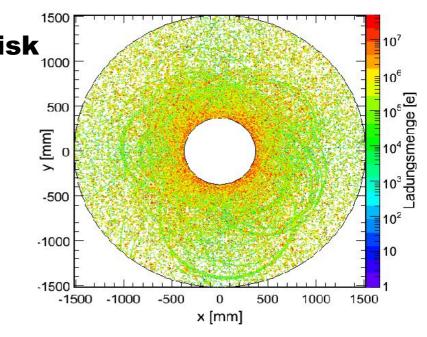
• 1000 Bunch Crossings (BX)

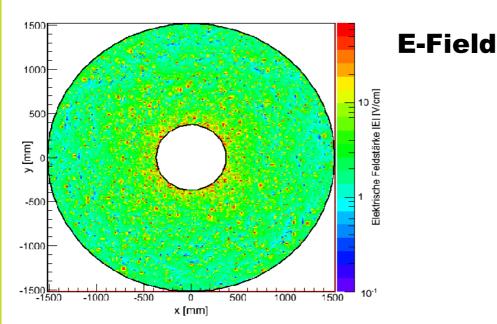
E-Field

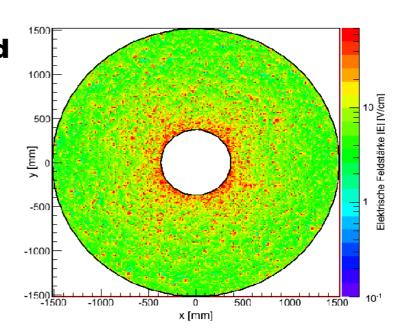
MarlinTPC

- 1. Introduction
- 2. Simulation Digitization
- a) Mokka Hits b) Electron Cloud
- c) B Distortions
- d) Distortions
- d) Single Electr.
- e) E Distortions
- f) Ion Disk
- 3. Reconstruction
- a) Last Year
- b) TimePix
- c) Status
- d) TDC
- 4) Other Updates
- a) Analysis
- b) GEAR
- 5) Conclusion Outlook


Ralf Diener, Hamburg University

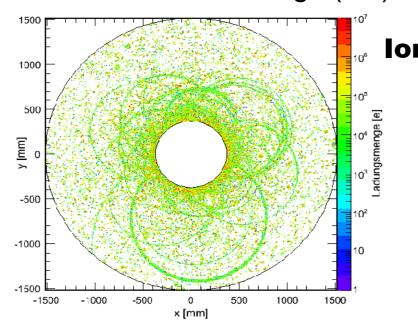


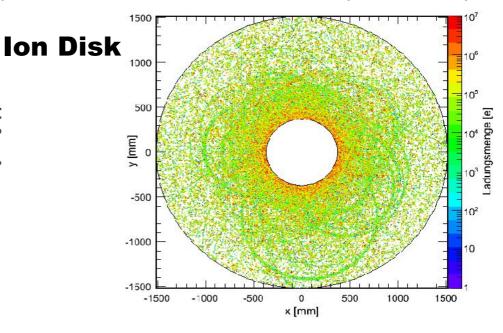

E-Field Distortions due to ILC Background

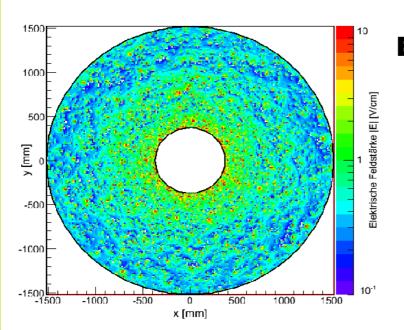

• 1000 Bunch Crossings (BX)

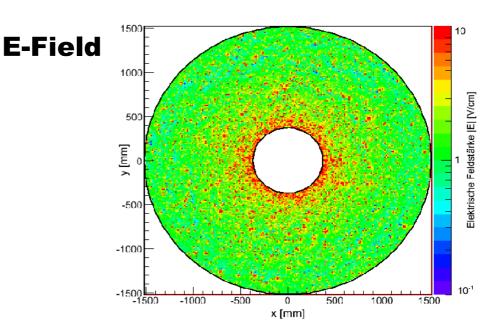
1. Introduction

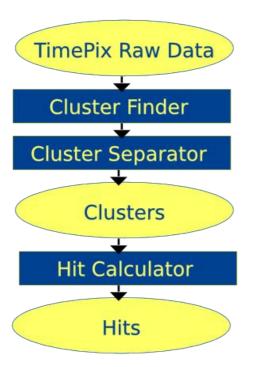
- 2. Simulation Digitization
- a) Mokka Hits b) Electron Cloud
- c) B Distortions
- d) Single Electr. e) E Distortions
- f) Ion Disk
- 3. Reconstruction
- a) Last Year
- b) TimePix
- c) Status
- d) TDC
- 4) Other Updates
- a) Analysis
- b) GEAR
- 5) Conclusion Outlook

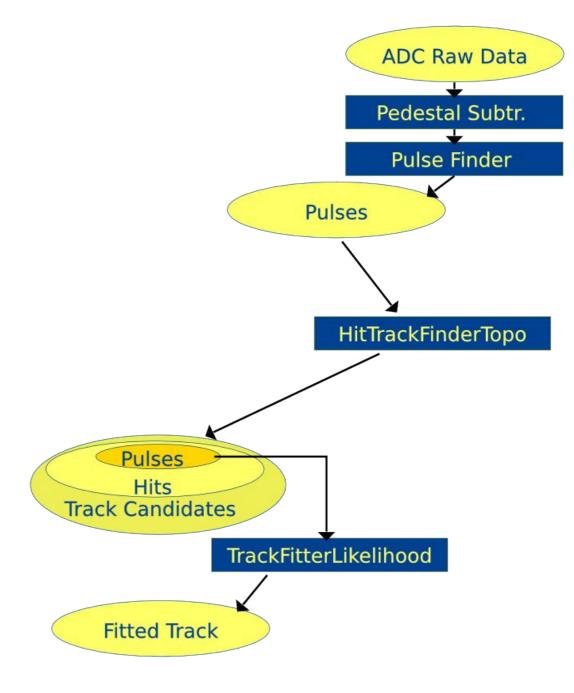

Ralf Diener. Hamburg University




E-Field Distortions with Optimized GEM Settings

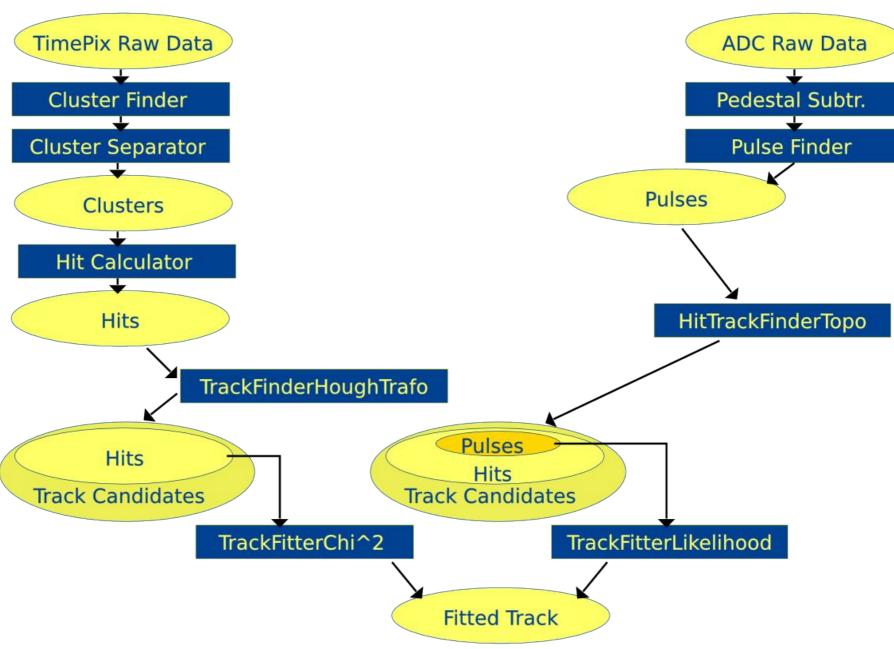

1000 Bunch Crossings (BX)


MarlinTPC


- 1. Introduction
- 2. Simulation Digitization
- a) Mokka Hits
- b) Electron Cloud
- c) B Distortions
- d) Single Electr.
- e) E Distortions
- f) Ion Disk
- 3. Reconstruction
- a) Last Year
- b) TimePix
- c) Status
- d) TDC
- 4) Other Updates
- a) Analysis
- b) GEAR
- 5) Conclusion Outlook

Ralf Diener, Hamburg University

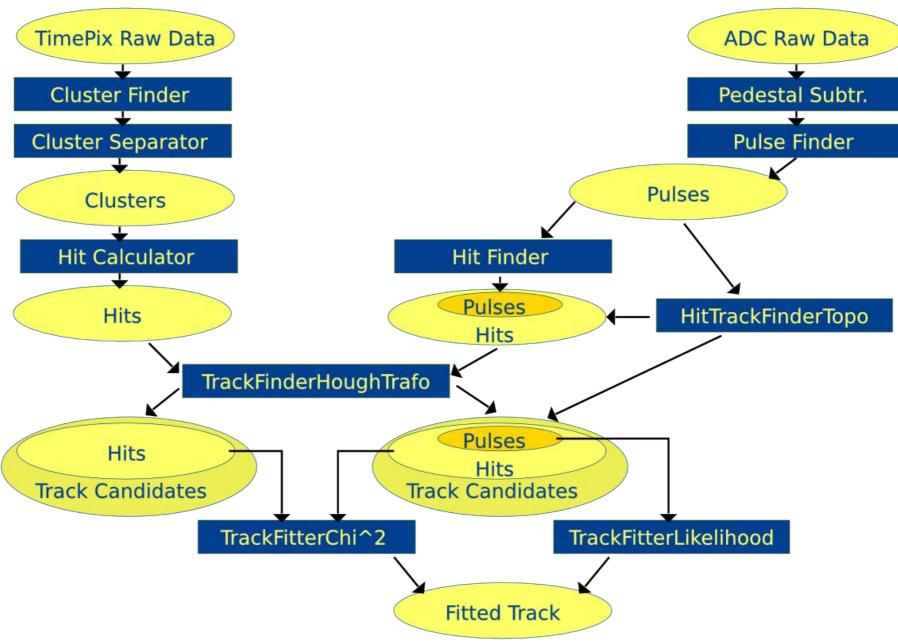
Reconstruction: Status Last Year



- 1. Introduction
- 2. Simulation Digitization
- a) Mokka Hits
- b) Electron Cloud
- c) B Distortions
- d) Single Electr. e) E Distortions
- f) Ion Disk
- 3. Reconstruction
- a) Last Year
- b) TimePix
- c) Status
- d) TDC
- 4) Other Updates
- a) Analysis
- b) GEAR
- 5) Conclusion Outlook

Ralf Diener, Hamburg University

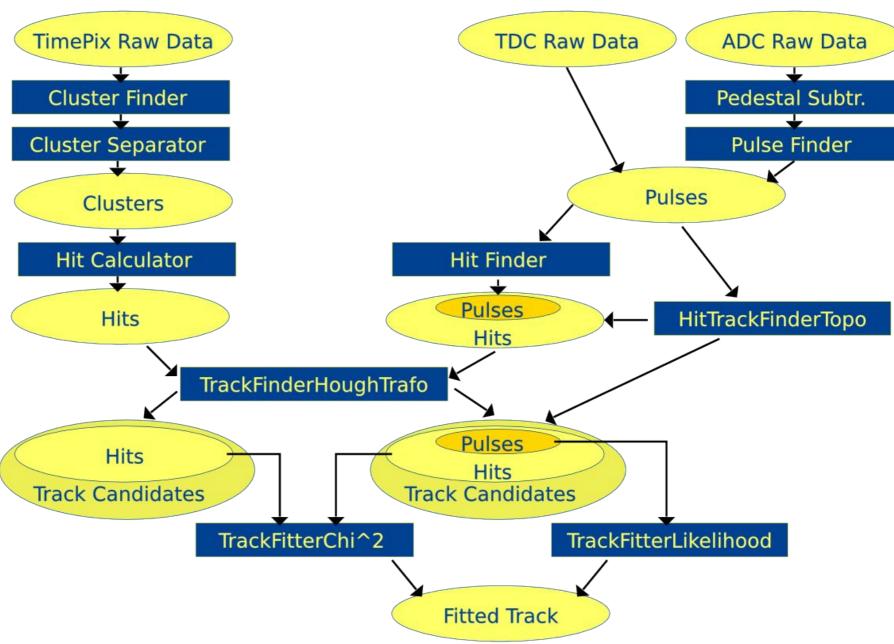
Reconstruction: Pixel Reco Update


MarlinTPC

- 1. Introduction
- 2. Simulation Digitization
- a) Mokka Hitsb) Electron Cloud
- c) B Distortions
- d) Single Electr.
- e) E Distortions
- f) Ion Disk
- 3. Reconstruction
- a) Last Year
- b) TimePix
- c) Status
- d) TDC
- 4) Other Updates
- a) Analysis
- b) GEAR
- 5) Conclusion Outlook

Ralf Diener, Hamburg University

Reconstruction: Current Status


MarlinTPC

- 1. Introduction
- 2. Simulation Digitization
- a) Mokka Hits b) Electron Cloud
- c) B Distortions
- d) Single Electr.
- e) E Distortions
- f) Ion Disk
- 3. Reconstruction
- a) Last Year
- b) TimePix
- c) Status
- d) TDC
- 4) Other Updates
- a) Analysis
- b) GEAR
- 5) Conclusion Outlook

Ralf Diener, Hamburg University

Reconstruction: TDC data

- 1. Introduction
- 2. Simulation Digitization
- a) Mokka Hits
- b) Electron Cloud
- c) B Distortions
- d) Single Electr.
- e) E Distortions
- f) Ion Disk
- 3. Reconstruction
- a) Last Year
- b) TimePix
- c) Status
- d) TDC
- 4) Other Updates
- a) Analysis
- b) GEAR
- 5) Conclusion Outlook

Other Updates

- HepRep XML output processor available
- Many analysis processors available:
 - BiasedResidualsProcessor
 - CutApplicationProcessor
 - HitAndTrackChargeProcessor
 - HitAndTrackCounterProcessor
 - TimePixClusterSizeProcessor
 - TimePixOccupancyProcessor
 - LinearThreePointResolutionProcessor
- LinearGeometricMeanResolutionProcessor

- TimePixTOTDistributionProcessor
- TrackParametersDistributionProcesor

116

- XYZDistributionProcessor
- XYZDistributionTracksProcessor
- ZBinTemplateProcessor

- 1. Introduction
- 2. Simulation Digitization
- a) Mokka Hits
- b) Electron Cloud
- c) B Distortions
- d) Single Electr.
- e) E Distortions
- f) Ion Disk
- 3. Reconstruction
- a) Last Year
- b) TimePix
- c) Status
- d) TDC
- 4) Other Updates
- a) Analysis
- b) GEAR
- 5) Conclusion Outlook

GEAR Update

- In current/old GEAR implementation:
 - Only one read-out module possible
 - Limited functionality of pad layouts
- Current development:
 - Implementation of multiple read-out modules
 - Extend functionality of pad layouts
 - Stay backwards compatible
- Status of multiple module read-out:
 - Classes are defined and implemented (not in repository yet)
 - XML parser defined and implemented (in testing)
- Todo:
 - Extend functionality of pad layouts based on feedback of TPC R&D groups

- 1. Introduction
- 2. Simulation Digitization
- a) Mokka Hits
- b) Electron Cloud
- c) B Distortions
- d) Single Electr.
- e) E Distortions
- f) Ion Disk
- 3. Reconstruction
- a) Last Year
- b) TimePix
- c) Status
- d) TDC
- 4) Other Updates
- a) Analysis
- b) GEAR
- 5) Conclusion Outlook

Conclusions and Outlook

- MarlinTPC is the default reconstruction and analysis tool for the Large Protoype
- Field distortions:
 - Basic functionality implemented
 - First tests promising
 - Still work to do (bugfixing, "mixing" E and B field distortions)
- Pixel reconstruction:
 - Basically ready and complete (is in use at least at the Bonn group)

- Pad reconstruction:
 - Basic chain ready and complete (can be extended)
 - Revision of some implementations
- Extend analysis processor collection to complete standard analysis
- Finish GEAR extension
- "Data Challenge" is planned: testing of all functionality with MC and protoype data

