Summary of physics based detector optimization studies

'08 9/12 Y. Takubo (Tohoku U.)

Introduction

Purpose of this talk

• The physics optimization group has continued the discussion and hard-work for the ILD optimization.

• Some results for the <u>benchmark processes</u> are already obtained.

In this talk, the conclusions are discussed, based on the physics studies at the optimization meeting, so far.

> This slide is mainly prepared with results presented at the optimization meeting before Cambridge meeting.

(\leftarrow Sorry, if your new results are not included.)

Physics benchmarks

Physics benchmark processes

• ZH branching ratio : Edinburgh and Bristol group, Wenbiao, Satoru, Yan

≻ Br(H→cc) (@ 250GeV)

• Top analysis : Katsumasa, Andreas

 $ightarrow \sigma, A_{FB}, \Delta M_{top} (@ 500 GeV)$

- ZH-recoil mass : Li, Kazuto > $\Delta \sigma$ (ZH), $\Delta M_{\rm H}$ (@ 250GeV)
- SUSY-jet mode : Jenny, Taikan, Daniela > $\Delta \sigma(\chi^+\chi^-, \chi_2^0\chi_2^0), \Delta M_{\chi}$ (@ 500GeV)
- $Z^* \rightarrow \tau \tau$: Taikan

 $ightarrow \sigma, A_{FB}, Pol(\tau) (@ 500GeV)$

Study is still ongoing.

- \rightarrow We cannot derive any conclusion, yet.

We have some results. → Discussion is done based on these analysis.

Detector geometries

We perform the optimization studies with 6 geometries:

- LDC/LDC'/LDCGLD : Prepared in Mokka
- GLD/GLD'/J4LDC : Prepared in Jutpiter
- \rightarrow Physics performance was compared between different geometries.

				— Inniter —		
	ТИОККа			Jupiter		
	LDC	LDC'	LDCGLD	J4LDC	GLD'	GLD
• B (T)	: 4.0	3.5	3.0	4.0	3.5	3.0
• TPC drift region Rmin (cm)	: 37.1	37.1	37.1	34.0	43.5	43.7
• ECAL Rmin (cm)	: 160.5	182.5	202	160	185	210
• ECAL total thickness (cm)	: 17.2	17.2	17.2	19.8	19.8	19.8
• HCAL total thickness (cm)	: 127.2	127.2	127.2	96	109	120
• TPC Z half length (cm)	: 218.6	224.8	250	206	225	250
• Endcap CAL Z (cm)	: 230	255	270	220	245	280

Analysis procedure

- Most event-samples are generated by both Mokka and Jupiter.
- MarlineReco is used for all physics analysis.

ZH recoil mass

Reconstruction of ZH-recoil mass

 $\Delta\sigma(ZH)$ and $\Delta M_{\rm H}$ are obtained from the recoil mass distribution for 500fb⁻¹.

- Decay of SM-Higgs is assumed.
- Fitting function of the recoil-mass: .

$$f(x) = N \begin{cases} e^{-\frac{(x-x_0)^2}{2\sigma^2}} & : \frac{x-x}{\sigma} \\ \beta e^{-\frac{(x-x_0)^2}{2\sigma^2}} + (1-\beta)e^{-(x-x_0)\frac{k}{\sigma}}e^{\frac{k^2}{2}} & : \frac{x-x}{\sigma} \end{cases}$$

Higgs recoil mass for $Z \rightarrow \mu \mu$

$Z \rightarrow \mu\mu$

• LDC

Δ	M_{recoil} Z	$\Delta\sigma(ZH)$
• LDCGLD :	29MeV :	0.32fb
	$\mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} $	0 0 0

• LDC' :23MeV : 0.28fb

: 23MeV

- LDC' : 47MeV : 0.49fb : 0.27fb
- LDCGLD : 51MeV : 0.52fb

 ΔM_{recoil} $\Delta \sigma(ZH)$

- : 47MeV : 0.52fb • LDC
- The difference between detector geometry is small.
- LDC/LDC' has slightly better performance than GLD.
 - \leftarrow Due to better momentum resolution?

Resolution of ZH-recoil mass

The influence of the tracking performance on the ZH-recoil mass was investigated with $ZH \rightarrow \mu\mu H$.

 $\underline{\sigma_{M}(\text{tr.-rec.})}$ (cos $\theta_{\text{lepton}} < 0.6$)

- GLD : 0.44GeV
 - The recoil-mass resolution 60
- GLD': 0.43GeV
 J4LDC: 0.45GeV
 Was the same level.

The true momentum was smeared with tracking performance.

 σ_{M} (tr.-smeared) (cos $\theta_{lepton} < 0.6$)

- GLD : 0.43GeV
- GLD': 0.46GeV
- L J4LDC : 0.44GeV

 σ_M (tr.-smeared) was consistent with σ_M (tr.-rec.).

 \rightarrow The tracking performance determines the recoil-mass resolution.

τ analysis

Forward-backward asymmetry

Tau selection cuts

- 1 positive & 1 negative jets
- Opening angle > 170deg.
- $|\cos\theta| < 0.9$
- Visible energy > 40GeV
- Ntrack ≤ 6
- Veto of 2 e and μ

Tau selection efficiency

- : 22.9% • GLD
- : 22.8% • GLD'
- J4LDC : 22.7%
- LDC' : 22.7%

No significant difference

- Acc(Bhabha) : 0.4ppm for GLD' Acc($\gamma\gamma \rightarrow \tau\tau$) : 0.0 for true-MC study

<u>AFB for 80fb⁻¹</u> (A_F = (N_F - N_B)/(N_F+N_B))

- GLD : $46.6 \pm 0.6 \%$
- GLD' : $46.7 \pm 0.6\%$
- J4LDC : $46.7 \pm 0.6 \%$
- LDC' : $46.8 \pm 0.6 \%$

There is no difference between detector geometries.

Selection efficiency of $A_{pol}(1)$

 $\tau \rightarrow \pi \nu$ and $\tau \rightarrow \rho \nu$ were used for polarization measurement.

$\underline{\tau^{\pm} \rightarrow \pi^{\pm} \nu}$ selection

Efficiency Purity

- GLD : 21.3% 85.7%
- GLD': 21.4%
- J4LDC : 21.4%
- LDC' : 21.2%

Better for larger geometry

80.8% 88.5% ↓ Better for larger geometry and fine ECAL granularity

- Efficiency: No significant difference
- Purity: J4LDC has the worst performance.

83.6%

> Due to the worse γ -separation from ρ

→ Large geometry and fine ECAL granularity have advantage for $\tau \rightarrow \pi \nu$ selection.

Selection efficiency of $A_{pol}(2)$

- Purity: Not so much difference
- Efficiency: J4LDC has the worst performance.

 \succ Due to worse π^0 and ρ reconstruction

← Cluster separation at ECAL is important. 200

→ Large geometry and fine ECAL granularity have advantage for $\tau \rightarrow \rho \nu$ selection.

Measurement accuracy of Apol

- J4LDC: 36.3 ± 8.2% -0.8%
- LDC' : $36.8 \pm 6.1\%$ -1.0%

A_{pol} accuracy in J4LDC is the worst due to worse selection efficiency.

tau -> pinu decay angle (eL 80%)

Mode BG

-0.8 -0.6 -0.4 -0.2

Signal + Mode BG

Entries

GLD

GLD' J4LDC

LDC'

0 0.2 0.4 0.6 0.8 1 cos(theta) of pi in tau-rest frame

Mean -0.1297 RMS 0.5007

SUSY analysis

Chargino/Neutralino selection

ZZ/WW separation is important for Chargeno/Neutralino selection.

<u>Chargin</u>	<u>o selection</u>	L
	Chargino	Neutralino
• GLD	: 13.7%	1.3%
• GLD'	: 13.5%	1.4%
• J4LDC	: 13.6%	1.4%

(Acc(SM 4jet) : 0.00% for LDC')

No difference was observed in chargino/neutralino selection.

→ The energy resolution is the same level for 4-jets at E_{jet} ~50GeV.

 Neutralino selection

 Chargino
 Neutralino

 • GLD
 : 0.3%
 16.4%

 • GLD'
 : 0.3%
 17.1%

 • J4LDC
 : 0.3%
 16.9%

 (Acc(SM 4jet): 0.01% for LDC')

SUSY mass measurement (1)

Mass of Chargino/LSP was obtained by fitting the E_W distributions.

• Fitting: (center) the 3rd polynomial & (edge) conv. of linear func. and gaussian

Chargino/LSP

- Chargino : 210.21
- Input • GLD : 215.4 ± 1.15 121.6 ± 0.72
- GLD' : 216.3 ± 1.55 120.8 ± 0.89
- J4LDC : 215.0 ± 1.20 120.4 ± 0.76
 - Chargino/LSP mass can be derived within the statistical error.
 - The difference of the measurement accuracy cannot be discussed. > The fitting function should be improved.
 - In E_w-distribution, significant difference is not found.

LSP (χ_1^0)

117.36

SUSY mass measurement (2)

LSP (χ_1^0)

 120.6 ± 0.29

117.36

Mass of Neutralino/LSP was obtained by fitting the E_Z distributions.

• Fitting: erf(left) & erfc(right)

Neutralino/LSP

Neutralino

- : 210.67 • Input
- GLD : 214.6 ± 0.49
- GLD': 214.9±0.44
- J4LDC : 214.4 ± 0.51 120.7 ± 0.31

- Chargino/LSP mass can be derived within the statistical error.
- Difference of the measurement accuracy is not significant.

Conclusion from physics studies

- ZH-recoil mass
 - > ZH-mass reconstruction : Not large difference
 - > The recoil-mass resolution is determined by tracking performance.
- Tau analysis
 - > A_{FB} : No significant difference
 - > A_{pol} : Large geometry and fine ECAL granularity have advantage.

✓ The cluster separation at ECAL is important for selection of $\tau \rightarrow \pi v$ and $\tau \rightarrow \rho v$.

- SUSY analysis
 - > SUSY selection efficiency : No significant difference
 - \rightarrow The energy resolution is the same level for 4-jets at E_{jet}~50GeV.
 - > SUSY mass : No significant difference

Homework & To be discussed

• Comparison between LDC' and GLD'.

 \leftarrow We do not understand the difference and consistency between LDC' and GLD' by physics study.

> Should all physics benchmarks be compared?: ZH-recoil, ZHjet mode, top-pair, SUSY

- What detector model will be used for LOI?
 - > All the detector parameters will not be fixed at this meeting.
 > We should consider how and who determine the remaining parameters.

Backup

Benchmark processes

	√s (GeV)	Observable	Comments
$ZH \rightarrow eeX$	250	$\sigma, m_{ m H}$	m_H =120GeV, test materials and γ_{ID}
$ZH \rightarrow \mu\mu X$	250	$\sigma, m_{ m H}$	$m_{\rm H}$ =120GeV, test $\Delta P/P$
ZH, H \rightarrow cc, Z \rightarrow vv	250	Br(H→cc)	Test heavy flavor tagging and anti- tagging of light quarks and gluon
ZH, H \rightarrow cc, Z \rightarrow qq	250	Br(H→cc)	Same as in multi-jet event
Ζ* → ττ	500	$\sigma, A_{FB}, Pol(\tau)$	Test π^0 rec. and τ rec. aspects of PFA
tt, t→bW, W→qq'	500	σ, A_{FB}, m_{top}	Test b-tag. and PFA in multi-jet events. m _{top} =175GeV
$\chi^+ \chi^-, \chi_2^0 \chi_2^0$	500	σ, m_{χ}	Pint 5 of Table 1 of BP report. W/Z separation by PFA.

 $\int Ldt = 250 fb^{-1} @250 GeV, 500 fb^{-1} @500 GeV$

Target of measurement accuracy

0	Process and	Energy	Observables	Target	1
4 0	Final states	(TeV)		Accuracy	(
Higgs	$ee \to Z^0 h^0 \to \ell^+ \ell^- X$	0.35	$M_{recoil}, \sigma_{Zh}, BR_{bb}$	$\delta \sigma_{Zh} = 2.5\%, \delta BR_{bb} = 1\%$	1
	$ee \rightarrow Z^0 h^0, h^0 \rightarrow b\bar{b}/c\bar{c}/\tau\tau$	0.35	Jet flavour , jet (E, \vec{p})	$\delta M_h = 40 \text{ MeV}, \ \delta(\sigma_{Zh} \times BR) = 1\%/7\%/5\%$	1
	$ee \rightarrow Z^0 h^0, h^0 \rightarrow WW^*$	0.35	M_Z, M_W, σ_{qqWW}	$\delta(\sigma_{Zh} \times BR_{WW^*}) = 5\%$	(
	$ee \rightarrow Z^0 h^0 / h^0 \nu \bar{\nu}, \ h^0 \rightarrow \gamma \gamma$	1.0	$M_{\gamma\gamma}$	$\delta(\sigma_{Zh} \times BR_{\gamma\gamma}) = 5\%$	(
	$ee \rightarrow Z^0 h^0 / h^0 \nu \bar{\nu}, \ h^0 \rightarrow \mu^+ \mu^-$	1.0	$M_{\mu\mu}$	5σ Evidence for $M_h = 120$ GeV	1
$\begin{array}{l} ee \rightarrow Z^0 h^0, h^0 \rightarrow \mathrm{in} visible\\ ee \rightarrow h^0 \nu \bar{\nu}\\ ee \rightarrow t \bar{t} h^0\\ ee \rightarrow Z^0 h^0 h^0, h^0 h^0 \nu \bar{\nu} \end{array}$	$ee \rightarrow Z^0 h^0, h^0 \rightarrow invisible$	0.35	σ_{qqE}	5σ Evidence for BR _{invisible} = 2.5%	(
	$ee \rightarrow h^0 \nu \bar{\nu}$	0.5	$\sigma_{bb\nu\nu}, M_{bb}$	$\delta(\sigma_{\nu\nu h} \times BR_{bb}) = 1\%$	(
	$ee \rightarrow t\bar{t}h^0$	1.0	σ_{tth}	$\delta g_{tth} = 5\%$	(
	$ee ightarrow Z^0 h^0 h^0, h^0 h^0 u ar{ u}$	0.5/1.0	$\sigma_{Zhh}, \sigma_{\nu\nu hh}, M_{hh}$	$\delta g_{hhh} = 20/10\%$	(
-CDM ee - ee - ee - ee -	$ee \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^-, \tilde{\chi}_1^+ \tilde{\chi}_1^-$ (Point 3)	0.5		$\delta M_{\tilde{\tau}_1} = 1 \text{ GeV}, \ \delta M_{\tilde{\chi}_1^0} = 500 \text{ MeV},$	T
	$ee \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_3^0, \tilde{\chi_1^+ \chi_1^-}$ (Point 2)	0.5	M_{jj} in $jj\not\!\!\!E, M_{\ell\ell}$ in $jj\ell\ell\not\!\!\!E$	$\delta \sigma_{\tilde{\chi}_2 \tilde{\chi}_3} = 4\%, \ \delta (M_{\tilde{\chi}_2^0} - M_{\tilde{\chi}_1^0}) = 500 \text{ MeV}$	
	$ee \rightarrow \chi_1^+ \chi_1^- / \tilde{\chi}_i^0 \tilde{\chi}_j^0$ (Point 5)	0.5/1.0	ZZĘ, WWĘ	$\delta \sigma_{\tilde{\chi}\tilde{\chi}} = 10\%, \ \delta (M_{\tilde{\chi}^0_3} - M_{\tilde{\chi}^0_1}) = 2 \text{ GeV}$	1
	$ee \to H^0 A^0 \to b\bar{b}b\bar{b}$ (Point 4)	1.0	Mass constrained M_{bb}	$\delta M_A = 1 \text{ GeV}$	1
	ter avga t		and and attended		÷
Precision 1	$SM ee \rightarrow t\bar{t} \rightarrow 6 jets$	1.0		5σ Sensitivity for $(g-2)_t/2 \le 10^{-3}$	1
	$ee \rightarrow f\bar{f} \ (f = e, \mu, \tau; b, c)$	1.0	$\sigma_{f\bar{f}}, A_{FB}, A_{LR}$	5σ Sensitivity to $M_{Z_{LR}} = 7$ TeV	1

and the second se A DESCRIPTION OF A DESC

hep-ex0603010

Detector geometries

		GLD	GLD'	J4LDC	LDC'
ECAL Rmin	cm	210	185	160	182.5
В	Т	3	3.5	4	3.5
ECAL # layers		33	33	33	20/9
ECAL Rad. Length	X0	28.4	28.4	28.4	22.87
HCAL # Layers		46	42	37	48
Int. Length(Total)	λ	6.79	6.29	5.67	6.86
HCAL Rmax		361.7	325.0	285.7	335.9
Cryostat Rin		375	330	300	335.9

ECAL(Jupiter): W(3mm) + Scinti.(2mm) + Gap(1mm), 12-sided no-gap (Mokka):W(2.1mm/4.2mm)+Si(0.32mm), Gap(0.5mm), 8-sided, with-gap

HCAL(Jupiter): Fe(20mm)+Scinti.(5mm)+Gap(1mm), 12-sided, no-gap (Mokka): Fe(20mm)+Scinti.(5mm)+Gap(1.5mm), 8(in)/8(out)-sided, no-gap