Single Particle Performance

Akiya Miyamoto, KEK

2nd ILD Workshop @ Cambridge

12-Sep-2008

Topics

Momentum Resolution by muonImpact Parameter Resolution by muon

Jupiter+Satellites by AM & K.Yoshida

Mokka+MarlinReco by S. Aplin

Energy resolution by gammaEnergy resolution by kaon_0L

Jupiter + Satellites/Marlin by AM & T.Takahashi

Mokka+Marlin/Pandora by M.Thomson

Tracking parameters of Jupiter/Mokka

		Jupiter	Mokka	Jupiter	Mokka	Jupiter	Mokka		
Model Name		gldapr08	LDC-	gldprim	LDCPrim	j4ldc_v0	LDC01_		
			GLD_01		e_0230	4	0030		
В	Т	3	3	3.5	3.5	4	4		
TPC Drift Region Rmin	cm	43.7	37.1	43.5	37.1	34	37.1		
TPC Drift Region Rmax	cm	197.8	193.1	174	173.3	152	151.1		
TPC Drift Region HalfZ	cm	260	249.8	235	224.8	216	218.6		
# pad rows		256	260	217	227	196	190		

TPC point resolution

 $\sigma_{r\phi}^2(\mu m^2) = P + QL$ $P \equiv 50^{2} + 900^{2} \sin^{2} \varphi : (\mu m)^{2}$ $Q \equiv (25^2/22) \times (4/B)^2 \sin \theta : (\mu m / \sqrt{cm}), \text{ B in Tesla}$ L: drift length [cm] $\sigma_z^2(\mu m^2) = 40^2 + 8^2 \times L(cm)$ Akiya Miyamoto, KEK 2nd ILD WS, Cambridge, 12/9/2008

Vertex Detector

					Jupiter				Mokka				
Model name			gldapr 08	gldprim _v04	j4I	ldc_v04	LDC_GL D_01Sc		LDCPrime_0 2Sc_p01		LDC01_0 6Sc		
Beam IR		(cm	1.5 1.4		1.	3	1.55		1.40		1.30	
Pip	e	Material		Be, 500mm ^t									
V Structure				Cylindrical, 3 double layers					Ladder				
T X Radiu and HalfZ Lengt	Layer Radius	S	L1	cm	1.75, 7.25	<mark>1.6</mark> , 7.25		<mark>1.5</mark> , 7.25	L1	1.65 5.0	1.65,1.50,5.05.0		1.40 , 5.0
	and		L2	cm	1.95, 7.25	<mark>1.8</mark> , 7.25		1.7, 7.25	L2	<mark>2.6</mark> , 12.5			5
	HalfZ		L3	cm	<mark>3.8</mark> ,13.5	3 . 7 ,13.	5	3.65 ,13.5	L3	3.7 , 12.5			5
	Length	٦	L4	cm	4.0 ,13.5	3.9,13.	5	3.85 ,13.5	L4	4.8 , 12.5			5
			L5	cm	5.8 ,13.5	5.8,13.	5	5.8 ,13.5	15	60 125			
			L6	cm	<mark>6.0</mark> ,13.5	6 .0,13.	5	<mark>6.0</mark> ,13.5	LU	0.0, 12.0		,	
Thickness X0				0.1% RL/layers									
	Resolu	utio	n		Point Resolution : $\sigma_{r\phi} = \sigma_z = 2.8 \mu m$								

Intermediate(Silicon) Tracker- Barrel

				Jupiter	Mokka				
			gldapr0 8	gldprim_v 04	j4ldc_v04	LDCPrime_02Sc_p 01			
Structure				Cylindric	Cylindrical				
Layer Radius &	L1	cm	9.0, 18.6		9.0, 18.5	1.1	16 14 38 0		
	L2	cm	16.0), 33.0	16.0, 33.0	LI	10.14, 30.0		
HalfZ	L3	cm	23.0), 47.5	23.0, 47.5	1.2	27.01, 66.0		
Length	L4	cm	30.0), 62.0	29.0, 62.0	LZ			
Thickness X0				0.6% RL/la	0.7%/RL/layer				
Point Resolution			$\sigma_{r_0} = \sigma_z = 10 \mu m$				σ _{ro} =3μm, σ _z =50μm		

Momentum Resolution

Pt resolution

Single muon, produced at $cos\theta=0$. by Jupiter+Satellites: TPC+IT+VTX fitting

LDC : ~5% worse at high Pt \rightarrow Shorter Lever arm GLD/GLD': ~10% worse at low Pt \rightarrow Lower B

Pt resolution – Mokka/Pandora

LDC-GLD : worse at low Pt

→ Similar trends as Jupiter/Satellites

GLDPrim - LDCPrim

Δ (dPt/Pt) vs Cos θ Single Muon

lowP \rightarrow j4ldc better highP \rightarrow gld/gldprim better

 $\pm 5 \sim \pm 10\%$ differences

dPt/Pt vs Cos0 GLDPrim - LDCPrim

Difference smaller in the forward region

Impact Parameter Resolution

Impact Parameter Resolution(P dep.)

Jupiter + Sattelites by K.Yoshida

J4LDC is better by 5~10%, especially at low P.

Impact Parameter Resolution(P dep.)

Difference among models by Jupiter/Satellites and Mokka/MarlinReco are similar LDC better by 5~10% at lowP.

GLDPrim vs LDCPrim ($\sigma_{r_{\phi}}(IP)$)

Impact Parameter Resolution(θ dep.)

Differences among gld/gldprim/j4ldc are ~15% at 1 GeV and smaller at H.E.

Akiya Miyamoto, KEK

GLDPrim vs LDCPrim ($\sigma_{r_{\phi}}(IP)$)

At p=100 GeV, |cosθ|>0.0 less difference between GLDPrim and LDCPrim ?? Calorimeter Energy Resolution

Jupiter/Mokka Calorimeter Parameters

		Jupiter	Mokka	Jupiter	Mokka	Jupiter	Mokka
Model Name		gldapr08	LDCGLD	gldprim	LDCPrime	j4ldc	LDC
В	Т	3	3	3.5	3.5	4	4
ECAL Rmin	cm	210	2.02	185	182.5	160	161
ECAL # layers		33		33	20/9	33	
ECAL Rad.Length	X0	28.4		28.4	22.87	28.4	
HCAL # Layers		46		42	48	37	
Int. Length(Total)	λ	6.79		6.29	6.86	5.67	
HCAL Rmax		361.7		325.0	335.9	285.7	
Cryostat Rin		375		330	335.9	300	

ECAL(Jupiter): W(3mm) + Scinti.(2mm) + Gap(1mm), 12-sided no-gap (Mokka):W(2.1mm/4.2mm)+Si(0.32mm), Gap(0.5mm), 8-sided, with-gap

HCAL(Jupiter): Fe(20mm)+Scinti.(5mm)+Gap(1mm), 12-sided, no-gap (Mokka): Fe(20mm)+Scinti.(5mm)+Gap(1.5mm), 8(in)/8(out)-sided, no-gap

gamma Energy resolution

Same performance in all models.

GLDPrim and LDCPrim same.

Calorimeter Energy Resolution for kaon_0L

Energy Resolution of kaon_0L

 $|\cos\theta| < 0.5$

kaon_0L Energy Resolution

Not conclusive result. - 12~13 GeV

- LE/HE behaviour

Clustering Algorithm ?

Point-by-point comparison

Same below ~ 10 GeV, difference at high energy \rightarrow shower leakage

Akiya Miyamoto, KEK

Pulse height distribution: All layers vs up to 31 layers (GLD)

HCAL thickness

Resolution vs used layers

Resolution relative to all layers

Summary

Momentum Resolution of single muon

- Mokka+MarlinReco and Jupiter+Satellites show similar trend.
 - 4T model is about 10% better than 3.5T/3T model below ~ 10 GeV.
 - 3T(3.5T) models is 5~105% better than 4T model above 10~ 50 GeV.
- Sub-detector technologies are more important than geometry
 - LDCPrim is better than GLDPrim by 15 ~ 30%
 - w./w.o SET, $\sigma_{r_{\varphi}}$ of IT, ... matters
- Impact parameter Resolution
 - Mokka+MarlinReco and Jupiter+Satellites show similar trend.
 - At 1GeV (100GeV), 4T model is ~15%(~5%) better than 3T model, 3.5 is in between
 - GLDPrim is better than J4LDC at $\cos\theta=0$.
 - Source of difference : 3 double layers better than 5 layers ?

Summary (cont.)

- Calorimeter by single particle.
 - Energy resolution of single γ :
 - Difference among gldapr08, gldprim_v04, and j4ldc_v04, LDCPrim are negligible
 - Energy resolution of k⁰_L;
 - Resolution can not be determined by fit due to LCPhysicsList feature
 - By point-by-point comparison,
 - differences among gld/gld'/j4ldc below ~20 GeV is ±5%
 - at 100 GeV, it is ~20% and can be explained by different interaction length
 GLD(6.79λ) → J4LDC(5.67λ)