Tau analysis ($A_{F B}$ and $A_{\text {pol }}$)

Taikan Suehara

ICEPP, The Univ. of Tokyo

Physics process for optimization

Benchmark processes:

Processes $\left(e^{+} e^{-} \rightarrow\right)$	$\begin{gathered} \sqrt{S} \\ (\mathrm{GeV}) \end{gathered}$	Observables	Comments
$\mathrm{ZH}, \mathrm{ZH} \rightarrow e^{+} e^{-X}$,	250	σ, m_{H}	$m_{H}=120 \mathrm{GeV}$, test materials and $\gamma_{\text {ID }}$
$\rightarrow \mu^{-} \mu^{+} X$	250	σ, m_{H}	$m_{H}=120 \mathrm{GeV}$, test $\Delta P / P$
$\mathrm{ZH}, \mathrm{H} \rightarrow \mathrm{cc}, \mathrm{Z} \rightarrow \mathrm{vv}$	250	$\mathrm{Br}(\mathrm{H} \rightarrow \mathrm{cc})$	Test heavy flavour tagging and anti-
			tagging of light quarks and gluon
, $\mathrm{Z} \rightarrow \mathrm{q}$ q	250	$\mathrm{Br}(\mathrm{H} \rightarrow \mathrm{qq})$	Same as above in multi-jet env.
$Z^{*} \rightarrow \tau^{+} \tau^{-}$	500	$\sigma, \mathrm{A}_{\text {FB }}, \operatorname{Pol}(\tau)$	Test π^{0} reconstruction and τ rec. aspects of PFA
$\dagger t, \dagger \rightarrow b W, W \rightarrow q q^{\prime}$	500	$\sigma, \mathrm{A}_{\text {FB }}, \mathrm{m}_{\text {top }}$	Test b-tagging and PFA in multi-jet events. $m_{\text {top }}=175 \mathrm{GeV}$
$\chi^{+} \chi^{-}, \chi_{2}{ }^{0} \chi_{2}{ }^{0}$	500	$\sigma, \mathrm{m} \chi$	Point 5 of Table 1 of BP report. W/Z separation by PFA

Tau-pair issues

- PFA performance in high- $\gamma(140) \tau \mathrm{s}$
- 1 or 3 energetic e $\mu \pi^{ \pm}+0$-several π^{0} s (rarely Ks)
- Concentrated in narrow angles, not easy to separate in PFA
- Cross section and $A_{\text {FB }}$ meas.
- Background suppression
- Bhabha \& γ-> $\tau \tau$
- Polarization measurements
- Decay mode identification

- Mode separation cuts
- Invariant mass cuts of ρ / π_{0} in ρv mode
- Obtaining $A_{\text {pol }}$ by angular dist. of decay products

Event samples (sig. \& bg.)

- Signal cross sections: $2.6 \mathrm{pb}\left(\mathrm{e}_{\mathrm{L}}\right), 2.0 \mathrm{pb}\left(\mathrm{e}_{\mathrm{R}}\right)$
- Simulated events:
- ~80 fb-1 in GLD, GLD' and J4LDC with Jupiter
- ~80 fb-1 in LDC' with Mokka
- Reconstructed by MarlinReco/PandoraPFA (ilcsoft v01-04)
- Backgrounds:
- Bhabha (35000 pb)
- 50pb preselected: $|\cos \theta|<0.92$, jet angle < 170deg
- $0.2 \mathrm{fb}^{-1}$ in GLD' with Jupiter
- Good e π separation is essential
$\gamma->\tau \tau(1500 \mathrm{pb})$
- Separation cut by generator info.
- Cut by angular \& energy information

BG suppression cuts

1. Specialized jet clustering (TaJet)

- Njet=2 durham is not worked due to ISR/FSR

2. 1 positive $\& 1$ negative jets required
3. Opening angle > 170deg
4. $\mid \cos ($ theta $) \mid<0.9$ for both jets

- Bhabha is much larger in the edge region

5. Number of track $<=6$

- Veto hadronic events

6. 2-electron and 2-muon veto

- For bhabha and ee-> $\mu \mu$ veto
- E-ID by Ecal/total deposit, μ-ID by hit/track energy

7. Visible energy $>40 \mathrm{GeV}$ $\gamma->\tau \tau$ rejection

BG suppression cuts results

Process	Tautau (non-pol)				B habha	ggtt
G eom etry	G LD	G LD'	J4LDC	LDC'	GLD'	stdhep
Cross section (pb)	2.3	2.3	2.3	2.3	34000	1500
Lum nosity ($\mathrm{fb}-1$)	77.28783	78.41826	78.46696	79.13043	0.2	0.7
Allevents	88881	90181	90237	91000	13M	1M
1+1 jet	59352	58919	62489	64159	-	-
et angle > 170 deg	26266	26476	26873	26944	-	217431
$\mid \cos$ (theta) $\ll 0.9$	22867	23176	23179	23202	11171	130
\# of track <= 6	22828	23127	23131	23153	11171	-
ee veto	21504	21733	21713	22041	13	-
mumu veto	20629	20816	20771	21123	13	-
40 GeV < Evis < 450 GeV	20352	20531	20502	20609	5	0
AFB cut efficiency	22.90\%	22.77\%	22.72\%	22.65\%	0.4 ppm	0.00\%

- Backgrounds are suppressed to negligible level.
- Signal efficiency is $\sim 23 \%$, quite low but...
- Most cut events in first 2 cuts are with hard-photons
- Practical signal efficiency is considered $\sim 75 \%$

Tau $A_{\text {FB }}$ result

$$
A_{F B}=\frac{N_{F}-N_{B}}{N_{F}+N_{B}}
$$

SM calculation
(Red: left, Blue: right)
No difference between geometries

	AFB cut eff	AFB value	AFB error in 500 fb-1
GLD	22.90%	$46.63 \% \pm 0.62 \%$	0.24%
GLD	22.77%	$46.69 \% \pm 0.62 \%$	0.24%
J4LDC	22.72%	$46.69 \% \pm 0.62 \%$	0.24%
LDC’	22.65%	$46.83 \% \pm 0.62 \%$	0.24%

Decay modes in $\mathrm{A}_{\mathrm{pol}}$ analysis

Taikan Suehara, ILD meeting at Cambridge, 12 Sep. 2008 page 8

Analysis flow

Pandora PFA

PFO particles
Tadet jot finder
\downarrow Jets
$1+1$ jets cut
Back to back cut BC veto cuts

$\mathrm{A}_{\text {pol }}$ analysis highlights:

- Mode selection
- Invariant masses of ρ and π^{0}
- $A_{\text {pol }}$ calculation by angular distribution of $\pi \mathrm{s}$

$\tau->\pi v$ selection cuts

1. 1 prong cut

Jets with >2 charged particle rejected.
2. Lepton veto

Events containing e/us are rejected. (criteria is the same as $A_{F B}$ lepton-pair veto)
3. Energy cut Jets with energy < 10 GeV rejected. (e/ μ / π separation is inefficient in low energy)
4. Events with > 1 GeV neutral particles are rejected.
In "tight cut" event with any neutrals are rejected.

$\tau->\pi v$ selection results

G eom etry	G LD		G LD'		J4LDC		LDC’	
	eff.	purity	eff.	purity	eff.	purity	eff.	purity
N0 cut	100.00%	10.89%	100.00%	10.88%	100.00%	10.90%	100.00%	10.90%
1+1 jt	67.87%	11.06%	66.49%	11.07%	71.39%	11.23%	72.50%	11.70%
opening angle $>170 \mathrm{deg}$	30.01%	11.05%	29.83%	11.05%	30.38%	11.12%	30.43%	11.20%
AFB cut	25.20%	11.98%	25.07%	11.98%	25.23%	12.10%	25.17%	12.11%
1 prong	25.17%	14.55%	25.06%	14.57%	25.22%	14.69%	25.16%	14.61%
Jet energy cut	24.32%	14.50%	24.24%	14.54%	24.36%	14.66%	24.34%	14.58%
e,m u veto	23.32%	24.26%	22.88%	24.02%	23.00%	24.53%	23.59%	23.98%
No gam m a cut	21.29%	85.73%	21.37%	83.58%	21.43%	80.84%	21.16%	88.50%
No gam m a cut (tight)	20.54%	86.89%	20.56%	84.57%	20.66%	81.95%	20.42%	89.22%

Selection performance between geometries (look at the $2^{\text {nd }}$ row from the bottom)

- Efficiency: not so different
- Purity: LDC' > GLD > GLD' > J4LDC
- $\tau->\rho \nu$ mode (decay 2π is mis-reconstructed as single) might be the reason (larger is better)
- LDC' has advantage due to high CAL granularity.

$\mathrm{A}_{\text {pol }}$ calculation ($\pi \mathrm{V}$ mode)

 ${ }^{2}$ Statistical error is almost the same for all geometries 2 Value shifts are larger in GLD'/J4LDC due to the lower purity.

	Pol	A pol (count)	estat	shift	A pol(linear fit)	estat	shift
G LD	$\begin{gathered} \mathrm{eL} \\ (80 \%) \end{gathered}$	$47.17 \% \pm 4.54 \%$	1.25\%	-7.01\%	54.89\% $\pm 4.67 \%$	1.28\%	-4.49\%
GLD'		49.45\% $\pm 4.52 \%$	1.25\%	-9.76\%	$52.11 \% \pm 4.64 \%$	1.28\%	-7.65\%
J4LDC		$49.14 \% \pm 4.60 \%$	1.28\%	-12.41\%	$52.20 \% \pm 4.68 \%$	1.30\%	-10.28\%
LDC'		52.72\% $\pm 4.30 \%$	1.22\%	-5.46\%	$57.95 \% \pm 4.49 \%$	1.27\%	-3.25\%
GLD	$\begin{gathered} \text { eR } \\ (80 \%) \end{gathered}$	$-25.62 \% \pm 4.77 \%$	1.35\%	-6.20\%	$-25.41 \% \pm 5.23 \%$	1.48\%	-7.58\%
GLD'		$-24.04 \% \pm 4.79 \%$	1.36\%	-9.23\%	$-23.33 \% \pm 5.18 \%$	1.47\%	-9.81\%
J4LDC		$-28.57 \% \pm 4.88 \%$	1.38\%	-7.58\%	$-27.73 \% \pm 5.22 \%$	1.48\%	-9.63\%
LDC'		$-18.93 \% \pm 4.63 \%$	1.33\%	-6.57\%	$-19.11 \% \pm 5.12 \%$	1.48\%	-6.15\%

Values obtained by

signal-only events!

$\tau->\rho v$ selection cuts

1. 1 prong cut
2. Lepton veto
3. Energy cut (jet energy must be $>10 \mathrm{GeV}$)

Above are same as $\tau->\pi v$ cuts
4. Events with > 10 GeV from neutrals (in total) are selected.
5. Mass of ρ is reconstructed, must be within 200 MeV from actual mass (770 MeV).
6. Mass of pO is reconstructed with neutral particles. If \# of neutrals >=3, nearest (in angle) two are combined until 2 particles are left.
Application of this cut is discussed later.

ρ and π^{0} reconstruction

- Clear difference observed in invariant mass distributions.
- LDC's best, larger is better in Jupiter geometries.
- Mark confirmed the granularity affects the mass distributions.
- Three candidates in ρv mode selection
- No π^{0} mass cut, π^{0} cut with left edge included / excluded

$\rho->\pi v$ selection results

G eom etry	GLD		GLD		J4LDC		LDC'	
	eff.	purity	eff.	purity	eff.	purity	eff.	purity
N0 cut	100.00\%	25.36\%	100.00\%	25.35\%	100.00\%	25.35\%	100.00\%	25.26\%
$1+1$ jet	66.69\%	25.33\%	65.54\%	25.43\%	69.26\%	25.35\%	70.31\%	26.30\%
opening angle $>170 \mathrm{deg}$	29.46\%	25.28\%	29.29\%	25.29\%	29.65\%	25.24\%	29.63\%	25.28\%
AFB cut	24.63\%	27.28\%	24.45\%	27.22\%	24.30\%	27.11\%	24.43\%	27.25\%
1 prong	23.30\%	31.38\%	23.10\%	31.30\%	23.02\%	31.19\%	23.07\%	31.06\%
Jet energy cut	23.14\%	32.15\%	22.96\%	32.10\%	22.87\%	32.00\%	22.95\%	31.87\%
e,mu veto	22.08\%	51.22\%	21.86\%	51.14\%	21.67\%	51.14\%	21.97\%	50.64\%
$>1 \mathrm{GeV}$ gamma	19.07\%	65.83\%	18.49\%	65.44\%	17.96\%	65.19\%	19.69\%	65.54\%
$570<\mathrm{m}$ R ho<970	12.70\%	83.38\%	12.05\%	81.80\%	11.26\%	81.39\%	12.77\%	85.71\%
m P i0 <200	10.41\%	88.71\%	9.81\%	86.77\%	8.95\%	85.90\%	9.73\%	89.84\%
$0<\mathrm{mP} \mathrm{i}$ 0 <200	5.31\%	92.30\%	4.32\%	90.32\%	3.72\%	90.48\%	6.38\%	93.88\%

- 3rd row from bottom: used as "no π^{0} mass cut".
- $2^{\text {nd }}$ row from bottom: used as " π^{0} mass cut".
- Events with single neutral are survived with this cut.
- Most bottom row: used as "tight π^{0} mass cut".
- Events with single neutral are eliminated with this cut.
- Clear difference by geometries: LDC's the best, bigger is better in Jupiter's.

$\tau->\rho v, \rho->\pi \pi$ distribution (1) no π^{0} cut

Edge Region
Central Region
\cos (theta) of pi in rho-rest frame

Edge Region

- Clear difference between e_{L} and e_{R} observed.
- Distribution is degraded due to the cut effects.
$P_{\text {pol }}$ vs dist. calc

$\tau->\rho v, \rho->\pi \pi$ distribution (2) tight π^{0} cut

- Number of signal is about a half.
- Difference between geometry enhanced.
- J4LDC is not realistic with this cut?
- Background is quite low, negligible level.

Obtaining $P(\tau)$ value

τ POLARIZATION MEASUREMENTS AT LEP AND SLC
 K. HAGIWARA ${ }^{\text {a,b }}$, A.D. MARTIN ${ }^{\text {a }}$ and D. ZEPPENFELD ${ }^{\text {c }}$
 ${ }^{2}$ Physics Department, University of Durham, Durham DHI 3LE, UK
 KEK, Tsukuba, Ibaraki 305, Japan
 Physics Department, University of Wisconsin, Madison, WI 53706, USA

Physics Letters B, 235 (1990) 198

$y=\frac{\left|E_{\pi_{0}}-E_{\pi}-\right|}{E_{\text {beam }}}$,
to be a good τ polarization analyzer. The y distribution is shown in fig. 2 for three values of the τ^{-}polarization: $P_{\tau}=-1,0$ and +1 . Indeed a large sensitivity to the τ polarization is found.

In order to quantify this sensitivity we consider the y symmetry
$A_{y}\left(P_{\tau}\right)=\frac{\Gamma\left(y>y_{c} ; P_{\tau}\right)}{\Gamma\left(y>y_{\mathrm{c}} ; P_{\tau}=0\right)}-\frac{\Gamma\left(y<y_{c} ; P_{\tau}\right)}{\Gamma\left(y<y_{c} ; P_{\tau}=0\right)}$
with respect to the crossover point at $y_{c}=0.316$. One

Fig. 2. Distribution of the energy difference of the two decay pions in the process $\tau^{-} \rightarrow \rho^{-} v_{\tau}, \rho^{-} \rightarrow \pi^{-} \pi^{0}$ for three values of the τ^{-}polarization. The common crossover point of the curves at $y_{\mathrm{c}}=0.316$ is due to the linear dependence of $\mathrm{d} \Gamma / \mathrm{d} y$ on the τ polarization.

- Combined information of $\tau->\rho \nu$ and $\rho->\pi \pi$ decay can be used in this method.

$\mathrm{A}_{\mathrm{pol}}$ calculation ($\rho \vee$ mode)

Statistical errors are larger in GLD'/LDC, esp. with $m \pi^{0}$ cut. Value shift is smaller than πv mode, negligible with $m \pi^{0}$ cut.

	Pol	A pol (nopin asscut)	estat	shift	A pol(w pin	scut)	estat	shift
G LD	$\begin{gathered} \mathrm{eL} \\ (80 \%) \end{gathered}$	$34.06 \% \pm 4.26 \%$	1.17\%	-2.68\%	34.53\% \pm	6.78\%	1.86\%	-1.66\%
G LD'		38.66\% $\pm 4.30 \%$	1.19\%	-3.59\%	42.62\% \pm	7.36\%	2.04\%	-1.10\%
J4LDC		$34.86 \% \pm 4.47 \%$	1.24\%	-4.24\%	36.30\% \pm	8.24\%	2.29\%	0.79\%
LDC'		$35.62 \% \pm 4.13 \%$	1.17\%	-3.36\%	36.81\% \pm	6.05\%	1.72\%	-0.99\%
G LD	$\begin{gathered} \text { eR } \\ (80 \%) \end{gathered}$	$-28.33 \% \pm 4.87 \%$	1.37\%	4.91\%	$-30.89 \% \pm$	8.32\%	2.35\%	3.70\%
G LD'		$-30.87 \% \pm 5.00 \%$	1.42\%	3.67\%	-34.26\% \pm	9.36\%	2.66\%	0.88\%
J4LDC		$-35.34 \% \pm 5.38 \%$	1.52\%	2.53\%	$-36.45 \% \pm$	11.18\%	3.16\%	-1.90\%
LDC'		$-32.70 \% \pm 4.89 \%$	1.41\%	2.89\%	$-32.46 \% \pm$	7.86\%	2.27\%	-0.49\%

Values obtained by signal-only events!

Performance Summary

Geometry	GLD	GLD'	J4LDC	LDC'	Related to
$\mathrm{A}_{\text {FB }}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	BG cut
$\mathrm{A}_{\text {pol }}(\pi v$, stat $)$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Selection efficiency
$\mathrm{A}_{\text {pol }}(\pi v$, shift $)$	\bigcirc	\triangle	\times	\bigcirc	Selection purity
$\mathrm{A}_{\text {pol }}(\rho v$, stat $)$	\bigcirc	\triangle	\times	\bigcirc	Selection efficiency
$\mathrm{A}_{\text {pol }}(\rho v$, shift $)$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Selection purity
Overall	\bigcirc	\triangle	\times	\bigcirc	

- Difference comes from ρ / π^{0} reconstruction
- Shift of πv comes from ρ with missing photon.
- Stat error of ρv comes from worse ρ / π^{0} reconstruction.
- Larger/higher granularity geometry preferred.
- But anyway the difference might be not critical...

Comments

- $A_{\text {FB }}$ calculation includes no backgrounds.
- All backgrounds can be suppressed to <10\% of signal in generator level.
- Accidental (on-flight decay, etc.) background is very difficult to estimate.
- For $A_{\text {pol }}$ study statistics is not sufficient.
- Obtained $A_{\text {pol }}$ is deviated from expectation: need to check systematic effects further.
- Performance should be checked on highgranualized GLD-size detector (might be optimal).

Thank you for your attention.

Backup

Opening angle cut

angtt

Taikan Suehara, ILD meeting at Cambridge, 12 Sep. 2008 page 24

Costheta cut

ptcs \{angtt>170\}

Taikan Suehara, ILD meeting at Cambridge, 12 Sep. 2008 page 25

Visible energy cut

```
evis \(\left\{\left((\right.\right.\) npjets \(==18 \& n n j e t s=1) \& \&\left(\right.\) pjetangle \(\left.\left.>170.0 / 180.0^{\circ} 3.14159\right)\right) \& \&(\) abs \((\) ppz \(/\) pe \()<0.98 \& a b s(\) npz \(/\) ne) \(<0.9)\}\)
```


Taikan Suehara, ILD meeting at Cambridge, 12 Sep. 2008 page 26

