

<u>The sensitivity of the International Linear Collider</u> <u>to the χ_2^0 in the di-muon final state</u>

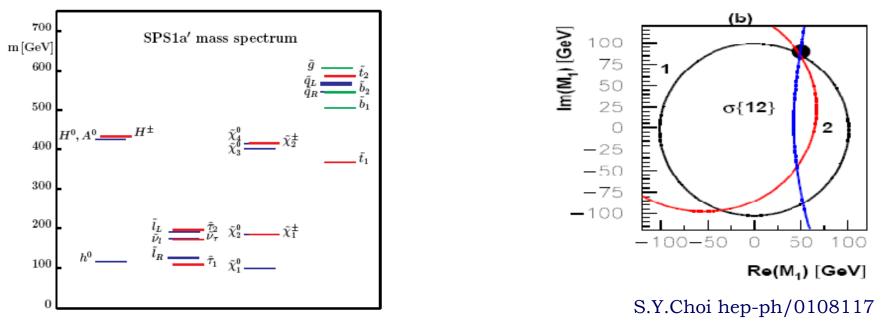
Nicola D'Ascenzo University of Hamburg - DESY

• Physics motivations

• Signal vv. Backgrounds . The experimental challenges.

• Statistical analysis tools and results

• What do we learn for the design of the detector?

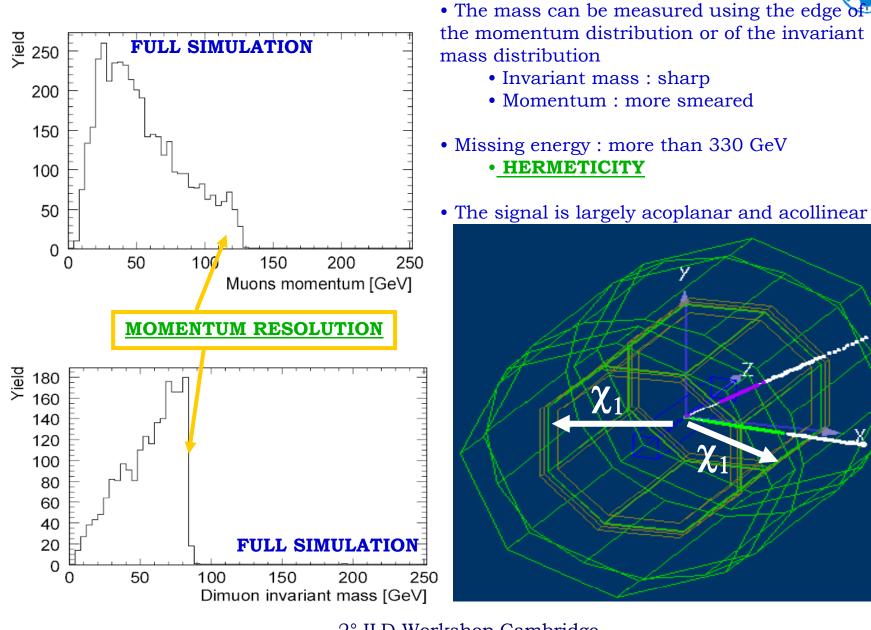

Parameters of the analysis presented in this talk :

- 1. WHIZARD event generator
 - Beamstrahlung, ISR, FSR
- 2. MOKKA, LDCPrime_02Sc
- 3. Beam Polarization: (-0.8,0.6)

Motivations

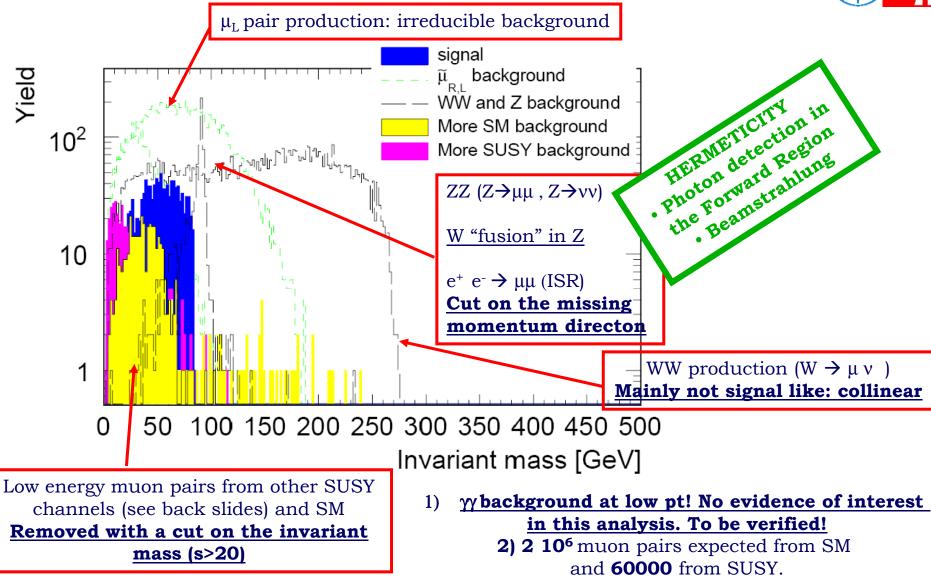
• The SU(2) gaugino parameter M_2 , the higgsino mass μ and tan(β) can be determined in the chargino system (hep-ph 0002033)

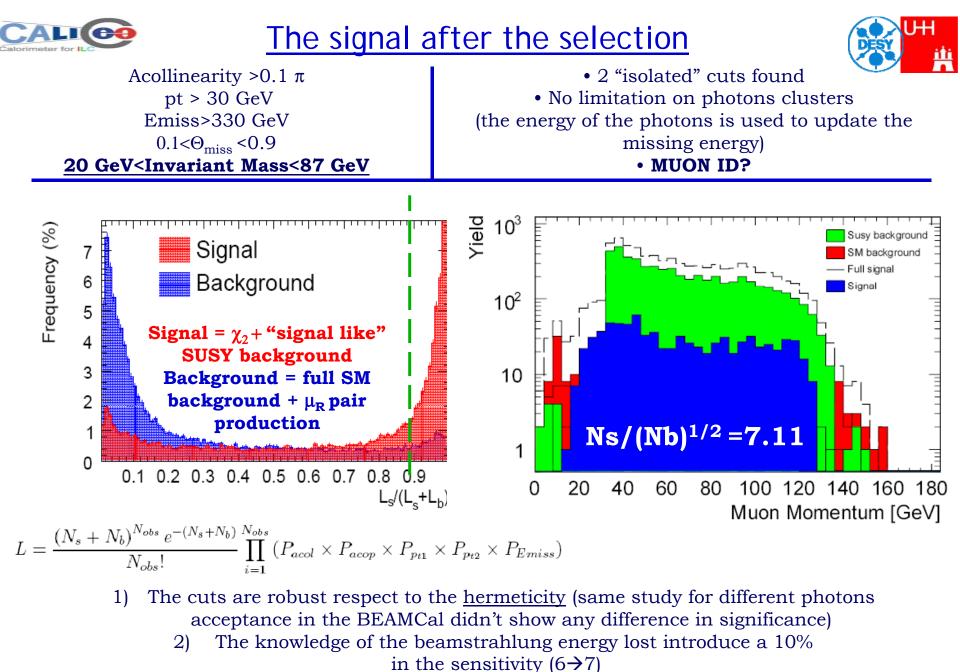
•<u>The SU(1) gaugino mass M_1 can be analysed in the neutralino system</u>


• <u>A precise measurement of the SUSY parameters requires a maximal set of observable measured with</u> precision (see FITTINO)

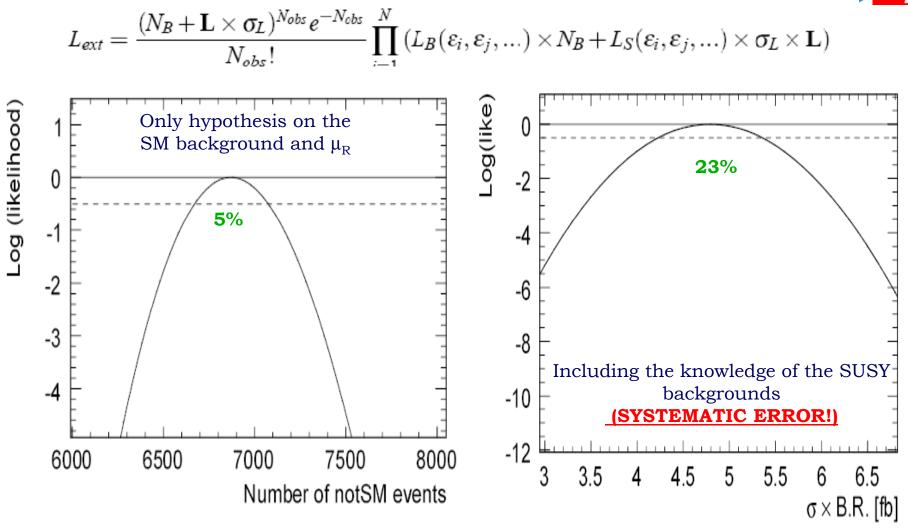
We study the χ_2 in the final state $\mu_R \mu$. $\sigma BR = 4.2 \text{ fb} \rightarrow 2000 \text{ events}$ in the first 4 years of operation @ (-0.8,0.6) beam polarization and @500 fb⁻¹

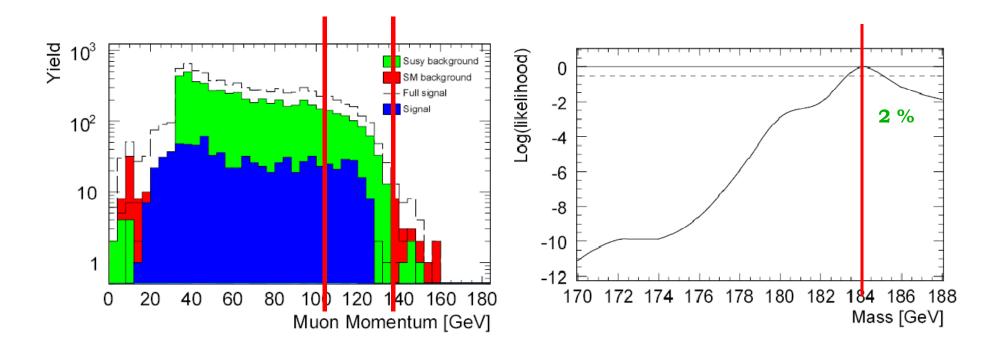
The signal





Backgrounds and selection cuts





New physics signatures can be put in evidence with good sensitivity
 2) Systematic errors still to be included

1) A binned likelihood estimation is performed using Monte Carlo simulations of the signal at different masses (2 GeV bins)

- 2) This statistical method helps to find "evidence" of the small statistics signal edge.
- 3) No significative statistical effects from the efficiency of the photon detection in the forward region.

What do we learn for the design of the detector?

- Strong cuts make the analysis of the high missing energy, high pt events independent on the hermeticity of the detector
 - 23 % confidence belt @ 68% C.L. for σ B.R. \rightarrow MODEL DEPENDENT
 - 2 % confidence belt @ 68% C.L. for the mass → STRONG SYSTEMATC UNCERTAINTY !
- Relax the cut on the invariant mass and on the θ miss (to be done)
 - The impact on the mesurement of the ISR photon tagging in the forward region has to be studied
 - The mass measurement on the invariant mass distribution would be affected of less systematics
- No particular problems observed in the tracking. $\Delta p/p=10^{-5}$ is even better than needed!
- Muon identification?
- We have now a full statistical analysis chain which quantifies the sensitivity of the ILD detector to the small signals, which are relevant for a full understanding and fitting of the SUSY scenario

BACK UP SLIDES...

Final State	Processes	\mathbf{Events}	Cuts 1	Cuts 2	Cuts 3
$\mu\mu\chi_1^0\chi_1^0$	$ ilde{\mu_R}\mu \overline{ ilde{l}_R}$	19800	1250	800	
	$\frac{\tilde{\mu_L} \bar{\mu_L}}{\tilde{\mu_L} \bar{\mu_L} \to \chi_1^0 \chi_2^0}$	26000	1500	870	
$\mu\mu u_e u_e\chi_1^0\chi_1^0$	$ ilde{\mu_L} \mu_L^{\overline{\mu}} o \chi_1^0 \chi_2^0$	800	70	70	
	$\chi_2^0 \chi_2^0 \to \mu^{\pm} \tilde{\mu}^{\mp} \nu_e \tilde{\nu_{e,L}}$				
$\mu \mu \nu_{\mu} \nu_{\mu} \chi_1 0 \chi_1^0$	$\tilde{\mu_L}\mu_L^{\overline{\mu}} \to \chi_1 0 \mu \nu_{mu} \tilde{\mu_\mu}$	4600	110	110	
	$\chi_2^0 \chi_2 0 \to \mu^{\pm} \mu \tilde{R}^{\mp} \nu_{\mu} \tilde{\nu_{\mu}}$				
	$\tilde{\mu_L}\tilde{\mu_L} \to \chi_1^0 \mu^{\pm} \chi_1^{\mp} \nu_{\mu}$				
	$\frac{\chi_1^{\pm}\chi_1^{\mp} \to \mu \tilde{\nu_{\mu}} \mu \tilde{\nu_{\mu}}}{\tilde{\mu_L} \tilde{\mu_L} \to \chi_1^0 \chi_2^0}$				
$\mu\mu\nu_\tau\nu_\tau\chi_1^0\chi_1^0$	$ ilde{\mu_L} \mu_L^{\widetilde{\mu}} o \chi_1^0 \chi_2^0$	800	90	90	
	$\chi_2^0 \chi_2^0 \to \mu \tilde{\mu} \nu_{tav} \nu_{\tau}$				
$\mu^{\pm}\mu^{\mp}\nu_{\mu}\nu_{\tau}\nu_{\mu}\nu_{\tau}\chi_1^0\chi_1^0$	$ ilde{ au_1} ilde{ au_1}$	3000	110	110	
	$ ilde{ au_1} ilde{ au_1}$				
$\mu^{\pm}\mu^{\mp}\nu_{\mu}\nu_{\tau}\nu_{\mu}\nu_{\tau}\nu_{\mu}\nu_{\mu}\chi_{1}^{0}\chi_{1}^{0}$		300	88	40	
	$ ilde{ au_2} ilde{ au_2} o \chi_1^0 au\chi_2^0 au$				
	$\chi_2^0 \chi_2^0 \to \tau \tilde{\tau} \nu_\mu \tilde{\nu_\mu}$				
$\mu^{\pm}\mu^{\mp}\nu_{\mu}\nu_{\tau}\nu_{\mu}\nu_{\tau}\nu_{\tau}\nu_{\tau}\chi_{1}^{0}\chi_{1}^{0}$	$ ilde{ au_2} ilde{ au_2} o \chi_1^0 au\chi_2^0 au$	3600	3	3	
	$\tau_2 \tau_2 \to \chi_1^0 \tau \chi_1^{\pm} \nu_{\tau}$				
	$ au_2 au_2 \longrightarrow \chi_1^0 au \chi_1^{\pm} u_{tau}$				
	$ au_1 au_2 o au \chi_1^0 au \chi_2^0$				
	$\tilde{\tau_1}\tilde{\tau_2} \to \tau \chi_1^0 \chi_1^{\pm} \nu_{\tau}$				
	$\chi_2^0 \chi_2^0 \to \tau \tilde{\tau} \nu_\tau \tilde{\nu_\tau}$				
	$\chi_1^+\chi_1^- \to \tau \tilde{\nu_{tau}} \tau \tilde{\nu_{tau}}$				
	$\chi_1^+\chi_1^- \to \tau \nu_{tau} \tilde{\tau} \nu_{tau}$				
$\mu^{\pm}\mu^{\mp}\nu_{\mu}\nu_{\tau}\nu_{\mu}\nu_{\tau}\nu_{e}\nu_{e}\chi_{1}^{0}\chi_{1}^{0}$	$ ilde{ au_2} ilde{ au_2} o \chi_1^0 \chi_1^0 au au$	360	40	40	
	$\tilde{\tau_1}\tilde{\tau_2} \to \tau\chi_1^0\tau\chi_2^0$				
	$\chi_2^0 \chi_2^0 \to \tau \tilde{\tau} \nu_e \tilde{\nu_e}$				
$\mu^{\pm}\mu^{\mp}\nu_{\mu}\nu_{\tau}\nu_{\mu}\nu_{\tau}\nu_{\mu}\nu_{\tau}\chi_{1}^{0}\chi_{1}^{0}$	$\chi_1^{\pm}\chi_1^{\mp} \to \mu \tilde{\nu_{\mu}} \tau \tilde{\nu_{\tau}}$	1600	0	0	0
	$\chi_1^{\pm}\chi_1^{\mp} \to \mu \tilde{\nu_{\mu}} \nu_{\tau} t \tilde{a} u$	1700	0	0	0
	$ ilde{\mu_L} ilde{\mu_L} o \chi_1^0 \mu \chi_1^\pm u_\mu$	150	0	0	0