ILD Vertex Detector for the Lol

Marc Winter (IPHC/Strasbourg)

OUTLINE

- Introductory remarks :
$\approx V X D$ requirements $\quad \approx$ R\&D questions related to the Lol
- Status of sensor and system integration R\&D \triangleright "state-of-the-art" detector :
\approx achieved performances \longmapsto "s.o.t.a." VXD $\quad \approx$ continuation of the R\&D
- The issue of alignment
- Accounting for beam background in Lol studies
- Towards the Lol :

```
\approxwich VXD parameters to vary }\approx\mathrm{ sharing of tasks
```

- Summary
- Aim for several very ambitious (realistic ?) goals :
\diamond excellent impact parameter resolution
\diamond distinguish impacts from close tracks (inside jets)
\diamond reconstruct soft tracks $\quad \diamond$ minimal m.s. \longmapsto pattern confusions, $\Delta p / p$, part.flow, jet flavour $\left(e^{-} v s \nu_{e}\right), \ldots$
- Constraints mainly driven by $\sigma_{i p}=\mathbf{a} \oplus \mathbf{b} / \mathbf{p} \cdot \boldsymbol{\operatorname { s i n }}^{3 / 2} \theta$
small a \mapsto high granularity (pixels) and small $R_{i n}$
small $b \mapsto$ small $R_{i n}\left(b \sim R_{i n}\right)$,
reduced mat. budget $\left(b \sim\left(X / X_{0}\right)^{1 / 2}\right) \mapsto$ low $P_{\text {diss }}$

Accelerator	$\mathbf{a}(\mu \mathrm{m})$	$\mathbf{b}(\mu m \cdot \mathrm{GeV})$
LEP	25	70
SLD	8	33
LHC	12	70
RHIC-II	13	19
ILC	<5	<10

- Accommodate running conditions (e.g. event pile-up, background from $\mathrm{e}_{B S}^{ \pm}$, photon gas ?, etc.)
\diamond occupancy \mapsto high r.o. speed (or extreme granularity) \mapsto power dissipation
\diamond irradiation \mapsto radiation tolerant detectors
- Accommodate requirements from other sub-detectors :
\diamond ex : relatively low B for PFA optimisation \Rightarrow occupancy in VXD \nearrow
- Accommodate \& optimise VXD design consistently with neighbouring sub-det. (SIT, FW/BW trackers)

How realistic is the vertex detector description used for the Lol physics studies ?

\diamond how far are we from achieving the Lol detector performance ?
\diamond what could actually be achieved within 2-3 years with the accumulated R\&D experience and outcome ?
\diamond could these achievements already suit the least demanding part of the detector, i.e. the 3 outer layers ?
\diamond what is still needed to also satisfy the requirements of the two inner layers ?
\diamond meanwhile, could we imagine a SAFE / CONSERVATIVE version of the vertex detector allowing to assess the needs for further R\&D and to spot where it is most necessary?

Beyond the Lol :

\diamond why do we need several R\&D lines in parallel ?
\diamond how are sensor technologies and architectures connected to integration issues and detector geometry?
\diamond what is the advantage of pursuing the Lol studies with 2 different (but complementary) VXD concepts ?

How to optimise the goals of further R\&D ?

R\&D groups expect guidance from detector performance studies in order to know :
\diamond how far each R\&D direction should be pursued
\diamond which compromise between conflicting R\&D directions is best suited to ILC physics goals
\Rightarrow where to put most effort?

Physics studies need ABSOLUTELY to account for dominant backgrounds !!! (e.g. beamstrahlung $\mathrm{e}^{ \pm}$)

Pixel sensors :

\diamond pixel technologies developed : CCD, CMOS sensors, DEPFETS, 3D-PS (\supset Sol)
\diamond read-out architectures : \bumpeq continuous r.o. (during train) vs delayed r.o. (inbetween trains)
\bumpeq various degrees of signal processing inside pixels (time stamping, discri., ...)
$\diamond R \& D$ goals : r.o. speed, power consumption (power cycling), radiation tolerance, EMI, material budget
$\diamond C C D: U K$ (LCFI), Japan - DEPFET: Germany - CMOS: France, Italy, US ? - 3DPS: US, France, Italy
Ladder design \longmapsto mat. budget $\sim \mathbf{0 . 1 - 0 . 2} \% \mathrm{X}_{0}$:
\diamond LCFI coll.: supports made of SiC foam
\diamond KEK: FPCCD sandwiching an RVC (+epoxy) support
\diamond DEPFET: monolithic Si slab incorporating sensors and mechanical support in a single piece
\diamond CMOS: extrapolate from STAR-HFT ($0.3 \% X_{0}$)
\square Global detector design $\longleftrightarrow \mathbf{2}$ approaches :
\diamond extrapolated from SLD vertex detector \diamond FNAL based studies (W.Cooper)
$\triangleright \triangleright \triangleright$ who cares about Be beam pipe near I.P.: $0.25 \longmapsto 0.50 \mathrm{~mm}$ thickness ?
Comprehensive reviews on http://ilcagenda.linearcollider.org/conferenceDisplay.py?confld=2564
(ILC Vertex Detector Workshop, Villa Vigoni, Menaggio, Italy, 21-24 April 2008)

Maintain 2 alternative long-barrel approaches :

\square Two read-out modes considered :
\approx continuous read-out
\approx read-out delayed after bunch-train $\longmapsto 3$ double layers expected to help \Rightarrow mini-vectors

Ladder geometry \longmapsto accommodate simultaneously different sensor technologies :

- Steering and r.o. electronics foreseen along the edges and at the ladder ends
- Ladder material budget: * VXD03: 0.11 \% X X_{0} * VXD04:0.16 \% X
\Downarrow

Will be studied extensively by VD groups working on diff. sensor technologies
"Realistic" ladder fixture on "gasket" \longmapsto combine with beam pipe geometry study

Vertex Detector parameters which seem achievable within short term, based on present R\&D outcome :

- Single point resolution : $3.5 \mu \mathrm{~m}$ (Lol:2.8 mm)
$\hookrightarrow \mathbf{a} \sim 5-6 \mu \mathrm{~m}$
\triangleright Lol: $\mathbf{a}<5 \mu m$
- Ladder material budget : 0.25-0.3\% (Lol : 0.1%)
$\hookrightarrow \mathbf{b} \sim 10-12 \mu m \cdot G e V$
\triangleright Lol : $\mathbf{b}<10 \mu m \cdot G e V$
- Read-out speed :

Layer	L1	L2	L3 - L5
Lol (μs)	≤ 50	≤ 100	≤ 200
State-of-the-art (μs)	60	120	240

- Power dissipation : (Lol : << 100 W in average)
- instantaneous : ~ 1 kW
- average (1/50 duty cycle) : ~ 20 W

$\triangleright \triangleright \triangleright$ Most decisive Lol assumptions for the VXD seem reachable

Pixel sensors :

\diamond improve on read-out speed (as much as possible ...) and radiation tolerance
\hookrightarrow magnitude of simulated beam background is a challenge, but reality may still be worse $\ldots \Rightarrow$ account for it !
\diamond pursue R\&D on delayed read-out architecture to avoid reading out during trains (EMI, consumption ?)
\diamond explore emerging technology variants offering better performances:
\bumpeq the best we have today may not be sufficient to face the real beam background
\bumpeq better performing technologies will be beneficial for higher \sqrt{s} (luminosity, double hit separation)

Detector design :

\diamond pursue ladder design studies in order to approach a global material budget of $\sim 0.1 \%$
\diamond pursue detector design in order to prove realism of Lol detector geometry
\diamond investigate double sided ladder geometry
\diamond investigate alternative design based on short barrel with disks at small angle
\Rightarrow manpower missing on system integration aspects

$\triangleright \triangleright \triangleright$ The continuation of the R\&D needs to be guided by physics simulations

The critical issue is the INTERNAL alignment
\triangleright need to control ladder (\& sensor) position within a few $\mu \mathrm{m}$ (LHC experiments manage $\sim 10 \mu \mathrm{~m}$)

Alignment requirements will probably impact the vertex detector design (material budget ?) :
\diamond rigidity of gasket and ladder support
\diamond necessity to implement position sensors ?
\diamond effect of air flow and power cycling (Lorentz forces ...) \triangleright effort to minimise it ?
\diamond make active areas of neighbouring ladders overlap sufficiently
\diamond squeeze $\sigma_{s p}$ (\mathbf{a} and \mathbf{b} !) in order to "leave room" for additionnal missalignment uncertainty

Impact on/from neighbouring tracking detectors?

Running at Z^{0} peak mandatory ($\gtrsim 1$ week/yr ?)
$\triangleright \triangleright \triangleright$ System study not yet started

Critical issue : beamstrahlung $\mathrm{e}^{ \pm}$hitting the $\mathbf{2}$ inner layers

\diamond GuineaPig, "standard" optics, 14 mrad Xing, anti-DID, $R_{i n}=15 \mathrm{~mm}, 3.5 \mathrm{~T}, 15 \mu \mathrm{~m}$ thick sensitive vol.,
\diamond inner layer rate $\gtrsim 5 e_{B S}^{ \pm} / \mathrm{cm}^{2} / B X \longmapsto \gtrsim 800 e_{B S}^{ \pm} / \mathrm{cm}^{2} / 50 \mu s \longmapsto \gtrsim 2000$ "seed" pix/cm ${ }^{2} / 50 \mu s$ $\Rightarrow 25 \mu \mathrm{~m}$ pitch $\longrightarrow \gtrsim 1 \%$ occupancy ($\cong 100 \mathrm{kRad} \& 10^{11} \mathrm{n}_{\text {eq }} / \mathrm{cm}^{2} / \mathrm{yr}$)
$\diamond 2 n d$ layer background ($R=26 \mathrm{~mm}$) only 6-8 times less than innermost layer
\diamond not accounted for :
\bumpeq cluster size (only seed pixels) $\quad \bumpeq$ thicker sensitive volume (e.g. $50 \mu \mathrm{~m}$)
\bumpeq MC uncertainties (safety factor) \bumpeq other backgrounds (photons, photon coll., ...)
$\bumpeq \phi$-dependence (if any?)
$\triangleright \triangleright \triangleright$ Physics studies ought to include beamstrahlung effects
\diamond we need to know which occupancy is acceptable for (which ?) physics
\diamond potential impact on VXD design (radius and read-out speed of inner layers, technology,)
\diamond potential impact on neighbouring tracker design
$\triangleright \triangleright \triangleright$ How should we proceed?

Strategy : studies based on central production with baseline geometry \longmapsto outcome will be used by VD groups for refined studies
\square Basic VXD parameters to vary in order to evaluate impact on physics performance :

- innermost layer radius : $14 \mathrm{~mm} \lesssim R_{i n} \lesssim 20 \mathrm{~mm}$
- single point resolution : $2 \mu m \lesssim \sigma_{s p} \lesssim 3 \mu m$
- ladder material budget : $0.1 \% X_{0} \lesssim t \lesssim 0.2 \% X_{0}$
- magnetic field strength : $3 T \leq B \leq 4 T$

How to deal with the beam background vs VXD read-out frequency ?

- depends on layer : $5 \longrightarrow 40$ frames / train
- depends on read-out architecture : continuous read-out vs delayed read-out
- Several specific aspects of the VXD will be studied by vertex detector community :
- optimal pixel pitch and read-out time for each layer
- mini-vector efficiency for BG rejection (layer-pair geometry)
- optimal number of ladders per layer, etc.
- influence of electronics on ladder edge and ends (mat. budget)
- consequence of low P optics : shorter innermost layer
- influence of SIT : track matching \longmapsto time stamping , low P reconstruction, ...
- track matching (\& time stamping) with fw/bw trackers \longrightarrow how long should the barrel be ?
\triangleright for which fw/bw material budget does a geometry based on short barrel + end-cap disks start to be more attractive than long barrel?
- effect of Be beam pipe material budget (0.25 ... 0.50 mm thick)

Work organisation \triangleright Connecting VXD community studies with Global physics performance studies :

- consider a and b in $\sigma_{i p}=\mathrm{a} \oplus \mathrm{b} / p \cdot \sin ^{3 / 2} \theta$ as the reference indicators of the benefits or disadvantages of variants of the VXD geometries used in the central detector performance studies
- input from central detector performance studies towards VXD groups :
\bumpeq values of a and b corresponding to nominal detector studies
\bumpeq correspondance between $\sigma_{\mathbf{i p}}(\mathrm{a}, \mathrm{b})$ and flavour tagging efficiency \star purity
- VXD geometry in Lol :
\bumpeq VXD geometry in MOKKA expected to be detailed enough for Lol
\bumpeq present $R \& D$ achievements support the realism of Lol VXD descriptions
\bumpeq guidance expected from detector performance group to orient next R\&D steps
\square Alignment :
\bumpeq internal alignment is a serious challenge : few $\mu \mathrm{m}$ precision required
\bumpeq may impact VXD requirements ($\sigma_{s p}$), geometry and operation (power cycling, cooling)
\bumpeq need substantial running time at Z^{0} (how much ?)Organisation of VXD related studies for the Lol :
\bumpeq connection between detector performance group \& VXD community could consist in evaluating impact of VXD variations on parameter \mathbf{a} and b entering σ_{ip} (relation with efficiency*purity ?)
\bumpeq define sharing of VXD related studies between detector performance group \& VXD community
$\triangleright \quad \triangleright$ Studies ought to incorporate dominant beam background!
$\triangleright \quad>$ mailing list for discussions on ILD vertex detector: ild-subsystem-vtx@desy.de people interested may subscribe to the mailing list from https://lists.desy.de/sympa/info/ild-subsystem-vtx

BACK-UP SLIDES

. 5 layers intercepting angles down to $\|\cos \theta\| \simeq 0.97$:

- Layer radii : 15, 26, 37, 48, 60 mm
- Nb of ladders per layer: 10 (in) / 11/12 / 16 / 20 (out)

Ladder lengths : 125 mm (inner), 250 mm (outer)
Ladder support structure : carbon fiber (100 $\mu \mathrm{m}$ thick)

- Ladder sensitive part width on each layer :
- inner : 11 mm - second : 15 mm - outer : 22 mm
- $50 \mu \mathrm{~m}$ thick silicon
- Electronics at ladder end :
- 10 mm long
- $100 \mu \mathrm{~m}$ thick silicon
- Insensitive ladder edge :

- 1.5 mm wide
- $50 \mu \mathrm{~m}$ thick silicon
- can be activated

3 pairs of layers intercepting angles down to $\|\cos \theta\| \simeq 0.97$:

- Double-layer radii (inner/outer) : 16/18, 37/39, $58 / 60 \mathrm{~mm}$
- Nb of ladders per layer : 10 (in) / 12 / 20 (out)

Ladder lengths : 125 mm (inner), 250 mm (outer)
Ladder support structure : carbon fiber (100 $\mu \mathrm{m}$ thick)
Ladder sensitive part width on each layer :

- inner : 11 mm - outer : 22 mm
- $50 \mu \mathrm{~m}$ thick silicon
- Electronics at ladder end :
- 10 mm long
- $100 \mu \mathrm{~m}$ thick silicon

Insensitive ladder edge :

- 0.5 mm wide

- $50 \mu \mathrm{~m}$ thick silicon
- can be activated

