ILD Vertex Detector for the Lol

Marc Winter (IPHC/Strasbourg)

- Introductory remarks :
 - ⇔ VXD requirements
 ⇒ R&D questions related to the Lol
- Status of sensor and system integration R&D \triangleright "state-of-the-art" detector :
 - \Rightarrow achieved performances \rightarrow "s.o.t.a." VXD \Rightarrow continuation of the R&D
- The issue of alignment
- Accounting for beam background in Lol studies
- Towards the Lol :
 - \Rightarrow which VXD parameters to vary \Rightarrow sharing of tasks
- Summary

ILD-VD

Aim for several very ambitious (realistic ?) goals :

♦ excellent impact parameter resolution
♦ distinguish impacts from close tracks (inside jets)

♦ reconstruct soft tracks ♦ minimal m.s. \mapsto pattern confusions, $\Delta p/p$, part.flow, jet flavour (e⁻ vs ν_e), ...

• Constraints mainly driven by $\sigma_{in} = a \oplus b/n \cdot \sin^{3/2}\theta$	Accelerator	a (µm)	b ($\mu m \cdot GeV$)
small $a \mapsto$ high granularity (pixels) and small R_{in}	LEP	25	70
small $b \mapsto$ small R_{in} ($b \sim R_{in}$).	SLD	8	33
reduced mat, budget (b $\sim (X/X_0)^{1/2}$) \mapsto low P_{diss}	LHC	12	70
	RHIC-II	13	19
	ILC	< 5	< 10

Accommodate running conditions (e.g. event pile-up, background from e_{BS}^{\pm} , photon gas ?, etc.)

 \diamond occupancy \mapsto high r.o. speed (or extreme granularity) \mapsto power dissipation

 \diamond irradiation \mapsto radiation tolerant detectors

Accommodate requirements from other sub-detectors :

 \diamond ex : relatively low B for PFA optimisation \Rightarrow occupancy in VXD \nearrow

Accommodate & optimise VXD design consistently with neighbouring sub-det. (SIT, FW/BW trackers)

How realistic is the vertex detector description used for the LoI physics studies ?

- ♦ how far are we from achieving the Lol detector performance ?
- ♦ what could actually be achieved within 2–3 years with the accumulated R&D experience and outcome ?
- ♦ could these achievements already suit the least demanding part of the detector, i.e. the 3 outer layers ?
- ♦ what is still needed to also satisfy the requirements of the two inner layers ?
- In the second second

Beyond the Lol :

- ♦ why do we need several R&D lines in parallel ?
- ♦ how are sensor technologies and architectures connected to integration issues and detector geometry ?
- ♦ what is the advantage of pursuing the LoI studies with 2 different (but complementary) VXD concepts ?

How to optimise the goals of further R&D ?

R&D groups expect guidance from detector performance studies in order to know :

- ♦ how far each R&D direction should be pursued
- ♦ which compromise between conflicting R&D directions is best suited to ILC physics goals
 ⇒ where to put most effort ?

Physics studies need ABSOLUTELY to account for dominant backgrounds !!! (e.g. beamstrahlung e^{\pm})

Pixel sensors :

- ◊ pixel technologies developed : CCD, CMOS sensors, DEPFETS, 3D-PS (⊃ Sol)
- ◊ read-out architectures : ← continuous r.o. (during train) vs delayed r.o. (inbetween trains)
- ◇ *R*&*D* goals : r.o. speed, power consumption (power cycling), radiation tolerance, EMI, material budget
- ♦ CCD: UK (LCFI), Japan DEPFET: Germany CMOS: France, Italy, US ? 3DPS: US, France, Italy

Ladder design $\ \rightarrowtail$ mat. budget \sim 0.1–0.2 % X $_0$:

- ♦ LCFI coll.: supports made of SiC foam
- ♦ KEK: FPCCD sandwiching an RVC (+epoxy) support
- ♦ DEPFET: monolithic Si slab incorporating sensors and mechanical support in a single piece
- \diamond CMOS: extrapolate from STAR-HFT (0.3 % X₀)

Global detector design \rightarrow 2 approaches :

- ♦ extrapolated from SLD vertex detector
 ♦ FNAL based studies (W.Cooper)
- \triangleright \triangleright who cares about Be beam pipe near I.P.: 0.25 \rightarrow 0.50 mm thickness ?

Comprehensive reviews on http://ilcagenda.linearcollider.org/conferenceDisplay.py?confld=2564

(ILC Vertex Detector Workshop, Villa Vigoni, Menaggio, Italy, 21-24 April 2008)

Maintain 2 alternative long-barrel approaches :

Two read-out modes considered :

continuous read-out

read-out delayed after bunch-train → 3 double layers expected to help
 \Rightarrow mini-vectors

Ladder geometry \rightarrow accommodate simultaneously different sensor technologies :

• Steering and r.o. electronics foreseen along the edges and at the ladder ends

Will be studied extensively by VD groups working on diff. sensor technologies

Ladder Support

"Realistic" ladder fixture on "gasket" \rightarrow **combine with beam pipe geometry study**

Vertex Detector parameters which seem achievable within short term, based on present R&D outcome :

- Ladder material budget: 0.25 0.3 % (Lol: 0.1 %)
 → b ~ 10 12 μm · GeV
 ▷ Lol: b < 10 μm · GeV
- Read-out speed :

Layer	L1	L2	L3 – L5
Lol (μs)	\leq 50	\leq 100	\leq 200
State-of-the-art (μs)	60	120	240

- Power dissipation : (Lol : << 100 W in average)</p>
 - instantaneous : \sim 1 kW
 - average (1/50 duty cycle) : \sim 20 W

Pixel sensors :

- ◊ improve on read-out speed (as much as possible ...) and radiation tolerance
 - \hookrightarrow magnitude of simulated beam background is a challenge, but reality may still be worse ... \Rightarrow account for it !
- ♦ pursue R&D on delayed read-out architecture to avoid reading out during trains (EMI, consumption ?)
- explore emerging technology variants offering better performances:
 - ← the best we have today may not be sufficient to face the real beam background
 - \simeq better performing technologies will be beneficial for higher \sqrt{s} (luminosity, double hit separation)

Detector design :

- $\diamond\,$ pursue ladder design studies in order to approach a global material budget of \sim 0.1 %
- ♦ pursue detector design in order to prove realism of LoI detector geometry
- investigate double sided ladder geometry
- ♦ investigate alternative design based on short barrel with disks at small angle
 - \Rightarrow manpower missing on system integration aspects

DDD The continuation of the R&D needs to be guided by physics simulations

The critical issue is the INTERNAL alignment

 \triangleright need to control ladder (& sensor) position within a few μm (LHC experiments manage \sim 10 μm)

Alignment requirements will probably impact the vertex detector design (material budget ?) :

- rigidity of gasket and ladder support
- necessity to implement position sensors ?
- ♦ effect of air flow and power cycling (Lorentz forces ...) ▷ effort to minimise it ?
- ♦ make active areas of neighbouring ladders overlap sufficiently
- \diamond squeeze σ_{sp} (a and b !) in order to "leave room" for additionnal missalignment uncertainty

Impact on/from neighbouring tracking detectors ?

Running at Z^0 peak mandatory (\gtrsim 1 week/yr ?)

DDD System study not yet started

Critical issue : beamstrahlung e^{\pm} hitting the **2** inner layers

- \diamond GuineaPig, "standard" optics, 14 mrad Xing, anti-DID, $R_{in} = 15$ mm, 3.5 T, 15 μ m thick sensitive vol.,
- ◇ inner layer rate ≥ 5 e[±]_{BS}/cm²/BX → ≥ 800 e[±]_{BS}/cm²/50 µs → ≥ 2000 "seed" pix/cm²/50 µs
 ⇒ 25 µm pitch → ≥ 1 % occupancy (≅ 100 kRad & 10¹¹ n_{eq}/cm²/yr)
- \diamond 2nd layer background (R = 26 mm) only 6–8 times less than innermost layer
- ♦ not accounted for :
 - ightarrow cluster size (only seed pixels)
- ightarrow thicker sensitive volume (e.g. 50 μm)
- ightarrow MC uncertainties (safety factor)
- $\simeq \phi$ -dependence (if any ?)

- **Physics studies ought to include beamstrahlung effects**
 - ♦ we need to know which occupancy is acceptable for (which ?) physics
 - ◊ potential impact on VXD design (radius and read-out speed of inner layers, technology,)
 - potential impact on neighbouring tracker design
- $\triangleright \triangleright \triangleright$ How should we proceed ?

Strategy : studies based on central production with baseline geometry \rightarrow outcome will be used by VD groups for refined studies

Basic VXD parameters to vary in order to evaluate impact on physics performance :

- innermost layer radius : 14 mm \lesssim R $_{in}$ \lesssim 20 mm
- single point resolution : 2 $\mu m \lesssim \sigma_{sp} \lesssim$ 3 μm
- ladder material budget : 0.1 % X $_0 \lesssim t~\lesssim$ 0.2 % X $_0$
- magnetic field strength : $3 T \le B \le 4 T$

How to deal with the beam background vs VXD read-out frequency ?

- depends on layer : $5 \rightarrow 40$ frames / train
- depends on read-out architecture : continuous read-out vs delayed read-out

Several specific aspects of the VXD will be studied by vertex detector community :

- optimal pixel pitch and read-out time for each layer
- mini-vector efficiency for BG rejection (layer-pair geometry)
- optimal number of ladders per layer, etc.
- *influence of electronics on ladder edge and ends (mat. budget)*
- consequence of low P optics : shorter innermost layer
- influence of SIT : track matching \rightarrow time stamping , low P reconstruction, ...
- track matching (& time stamping) with fw/bw trackers \rightarrow how long should the barrel be ?

for which fw/bw material budget does a geometry based on short barrel + end-cap disks start to be more attractive than long barrel ?

• effect of Be beam pipe material budget (0.25 ... 0.50 mm thick)

Work organisation \triangleright Connecting VXD community studies with Global physics performance studies :

- consider **a** and **b** in $\sigma_{ip} = \mathbf{a} \oplus \mathbf{b}/p \cdot \sin^{3/2}\theta$ as the reference indicators of the benefits or disadvantages of variants of the VXD geometries used in the central detector performance studies
- input from central detector performance studies towards VXD groups :
 - \simeq values of \mathbf{a} and \mathbf{b} corresponding to nominal detector studies
 - $\hat{}$ correspondence between $\sigma_{ip}(\mathbf{a}, \mathbf{b})$ and flavour tagging efficiency*purity

- VXD geometry in Lol :
 - ← VXD geometry in MOKKA expected to be detailed enough for Lol

 - *←* guidance expected from detector performance group to orient next R&D steps
- Alignment :
 - ightarrow internal alignment is a serious challenge : few μm precision required
 - \simeq may impact VXD requirements (σ_{sp}), geometry and operation (power cycling, cooling)
 - rightarrow need substantial running time at Z^0 (how much ?)
- Organisation of VXD related studies for the LoI :
 - \simeq connection between detector performance group & VXD community could consist in evaluating impact of VXD variations on parameter **a** and **b** entering σ_{ip} (relation with efficiency*purity ?)
- Studies ought to incorporate dominant beam background !
- mailing list for discussions on ILD vertex detector: ild-subsystem-vtx@desy.de
 people interested may subscribe to the mailing list from https://lists.desy.de/sympa/info/ild-subsystem-vtx

_

BACK-UP SLIDES

5 Layer Geometry : VXD03

- 5 layers intercepting angles down to $\|\cos \theta\| \simeq$ 0.97 :
- Layer radii : 15, 26, 37, 48, 60 mm
- Nb of ladders per layer : 10 (in) / 11 / 12 / 16 / 20 (out)
- Ladder lengths : 125 mm (inner), 250 mm (outer)
- Ladder support structure : carbon fiber (100 μm thick)
- Ladder sensitive part width on each layer :
 - inner : 11 mm second : 15 mm outer : 22 mm
 - 50 μm thick silicon
- Electronics at ladder end :
 - 10 mm long
 - 100 μm thick silicon
- Insensitive ladder edge :
 - 1.5 mm wide
 - 50 μm thick silicon
 - can be activated

- **3** pairs of layers intercepting angles down to $\|\cos \theta\| \simeq$ 0.97 :
- Double-layer radii (inner/outer) : 16/18, 37/39, 58/60 mm
- Nb of ladders per layer : 10 (in) / 12 / 20 (out)
- Ladder lengths : 125 mm (inner), 250 mm (outer)
- Ladder support structure : carbon fiber (100 μm thick)
- Ladder sensitive part width on each layer :
 - inner : 11 mm outer : 22 mm
 - 50 μm thick silicon
- Electronics at ladder end :
 - 10 mm long
 - 100 μm thick silicon
- Insensitive ladder edge :
 - 0.5 mm wide
 - 50 μm thick silicon
 - can be activated

