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Introduction

Why?
Try to answer basic (and not
so) basic questions:

which material to use as
absorber?

optimum dimension of
scintillator tiles?

optimum absorber
thickness?

effect of dead zones?

effect of Birks law?

etc

How?
Studies done with PandoraPFA
algorithm

Calibration sample :
10 000 K0

L ’s events (stdhep files
provided by Mark Thomson)

Analysis sample :
10 000 Z → u ū, dd̄, ss̄ events at√

s = 91, 200, 360 and 500 GeV

LDC model: LDCPrime 02Sc

Mokka version: mokka-06-06-p03

ILC software version: v01-04

Physics list: LCPhys
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Results: RMS90

Disclaimer : presented PFA measurements are not direct measurement
of HCAL performance (only 6 - 10% neutral energy in HCAL, the rest in
trackers + ECAL)

RMS90

Jet energy resolution:

RMS90 =
(σE

E

)

90%
·
√

Ejet/GeV

i.e. for the part of energy
distribution which contains
90% of the events

Example

Z → uū, dd̄ , ss̄ at
√

s = 91 GeV,
default configuration of
LDCPrime_02Sc model
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Cross-checks of Results

Comparison of results from Mark Thomson (left) and me (right)

RMS90 and jet energy resolutions for default configuration
Ejet RMS90 σE/Ej

45 GeV 24.9% 24.9% 3.7% 3.7%
100 GeV 30.7% 31.4% 3.1% 3.1%
180 GeV 43.0% 44.8% 3.2% 3.3%
250 GeV 52.2% 54.7% 3.3% 3.5%
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Dead Zones: Layer Support Structure

Support structures for the HCAL
layers introduced few months ago
⇒ additional gaps and dead
zones

In default configuration:
Hcal layer support length = 5 mm (Al)

Hcal layer air gap = 2 mm (air)

Hcal_layer_support_length

stainless steel

aluminium

air

scintillator
(polystyrene)

Hcal_layer_air_gap

N * (2 + 5) mm
0 2 4 6 8 10 12 14 16 18 20 22

/G
eV

L0
K

E
/

90
R

M
S

0.5

0.6

0.7

0.8

Layer support structure
’sL

010 GeV K

N * (2 + 5) mm
0 5 10 15 20

/G
eV

je
t

E
/

90
R

M
S

0.04

0.06

0.08

0.10
Layer support structure

45 GeV jets

100 GeV jets

180 GeV jets

250 GeV jets

Angela Lucaci-Timoce ILD Optimization Meeting - September 2008, Cambridge 5



Absorber Material

Comparison between Fe, Pb and Ms58 (non-magnetic material)
Ms58 = 58% Cu + 39% Zn + 3% Pb

Material Nuclear interaction Density Moliere Radiation length λ/X0

length λ [cm] [g/cm3] radius [cm] X0 [cm]

Fe 16.77 7.87 1.719 1.757 9.65
Pb 17.59 11.4 1.602 0.5612 31.34

Ms58 16.46 8.6 1.7 1.43 11.52
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For low energy jets:
choice of material has a
minimal influence on
energy resolution

For high energy jets:
differences less than 1%
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Scintillator Thickness with PFA

Default configuration: 20 mm absorber + 5 mm scintillator
i.e. absorber/scintillator = 4

Modify scintillator thickness (everything else unchanged)

For K 0
L ’s used for calibration:
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For Z → uū, dd̄ , ss̄:
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Z → uū, dd̄ , ss̄: =⇒ Small differences (< 5%) in jet energy resolution for
absorber/scintillator < 7

Angela Lucaci-Timoce ILD Optimization Meeting - September 2008, Cambridge 7



Scintillator Thickness in GEANT3

Yuri Soloviev: GEANT3 simulation (FLUKA) of the test beam HCAL
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5 mm thick scintillator :
- 46 modules
- total length: 133.4 cm (λI ∽ 5.5)

3mm thick cintillator :
- 50 modules
- total length: 135 cm (λI ∽ 6)

Incident particles: π+, energies 10 - 150 GeV, hitting the center of
calorimeter
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Scintillator Thickness in GEANT3 - continued

Energy resolution from fit of total visible energy spectrum:
σE

E
=

σGaussian fit

meanGaussian fit

Example for 40 GeV pions:
 / ndf 2χ   28.3 / 20

Constant  9.7± 683.8 
Mean      0.001± 1.212 

Sigma     0.00107± 0.08246 

Totvisen
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.60
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Mean      0.001± 1.212 

Sigma     0.00107± 0.08246 

Totvisen

+π40 GeV   
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Scintillator Thickness in GEANT3 - continued

Energy / Gev
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3 mm scintillator : loss in stochastic term, but gain in constant term,
because of containment
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Absorber Thickness

Change absorber thickness to see sampling effects (modify number of
HCAL layers accordingly, to keep total thickness approximately constant;
range: 20 - 60 HCAL layers)

For K 0
L :
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For Z → uū, dd̄ , ss̄:

Absorber/scintillator ratio
3 4 5 6 7 8 9 10

/G
eV

je
t

E
/

90
R

M
S

0.030

0.035

0.040

0.045

0.050

0.055
Absorber thickness

45 GeV jets
100 GeV jets
180 GeV jets
250 GeV jets

Angela Lucaci-Timoce ILD Optimization Meeting - September 2008, Cambridge 11



Absorber Thickness - continued

Word of caution
Absorber thickness results need verification and must be interpreted with
care

Previous studies (2004) of A. Raspereza and V. Morgunov show that
longitudinal (and transversal) segmentation is decisive
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HCAL only
3x3x1 vs 3x3x2 (layers joined
in depth): separation quality
drops drastically with distance
between showers
⇒ longitudinal segmentation is
important!

Can be tested with test beam
data!

Maybe PFA does not use the full potential of the HCAL imaging
capabilities
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HCAL Depth and Transverse Segmentation

Investigation of HCAL depth (interaction lengths) by Mark Thomson with
PFA algorithm

Generated Z → uds events with large HCAL: 64 layers (approx. 7 λI )
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HCAL leakage significant for high energies ⇒ optimum of approx.
5 λI HCAL
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Saturation Effects: Birks Law

Response of organic scintillators not linear with particle energy
Primary excitation quenched by high density of ionized and excited
molecules
Saturation effects described by semi-empirical Birks law

dL
dx

∝
dE/dx

1 + kb · dE/dx

L - scintillator response
kB- Birks constant (material dependent)
For polystyrene: kB = 0.07943 mm/MeV
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MC model: LCPhys

Expect visible effects for physics lists in which neutrons play important
roles, e.g. QGSP BERT
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Saturation Effects: Birks Law - continued

Example from test beam models: LHEP vs QGSP BERT
Birks law: on vs off → stronger effect in QGSP BERT, which has largest
numbers of neutrons

nHitsHCALTCMT_DigitisedMC20GeVLHEPWithCuts
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RMS     29.11
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number of hits in HCAL and TCMT Digitised MC 20GeV LHEP with cuts
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PFA: Conclusions
1 PFA algorithm gives stable results for the performed studies

2 With respect to jet energy resolution:

Dimension of HCAL layer support structure not as important as originally
thought

Choice of absorber material is not decisive (at least for low energy jets)

Overview
Investigate reasons for (in)sensitivity of PFA algorithm

Move z-gaps

Results for different physics lists and 500 GeV jets

Single particle resolutions
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HCAL Engineering Answers

First results of engineering work (design, mechanics, costs...) from K.
Gadow and colleagues, but most of works still ahead

Caution: not final numbers, likely to evolve!

HCAL Absorber Material
Should have an optimized Z , λI and X0 for hadronic interactions
→ 5 − 7 λI

Possibilities: Fe, Cu, Pb, W, Ms

Decision: stainless steel

Arguments: strength, strain, antimagnetic, treatment, costs
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Engineering Answers: HCAL Barrel Dimensions

HCAL mounted inside solenoid to get homogenous and straight fiels
- barrel should fit into cryostat
- space should be left for installation and fixation points
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Inner radius: (2000 ± 50) mm
Decision arguments:
absorption length, stability,
deflection, type of sensitive
detectors, barrel shape design

Outer radius: (3200 ± 50) mm
Decision arguments:
solenoid costs, HCAL-, ECAL-,
TPC- performed calculations,
barrel shape design, supply
volumes
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Engineering Answers: HCAL Shape

Barrel shape: octogonal
Maximum use of the given
HCAL volume: optimal shape is
cylindrical

But: sensitive detector layers
will be from flat panels
(production reasons)
→ octogonal shaped
structure , split in the middle of
the total volume

Module shape: Tesla design
2 modules will build one octant
→ 16 modules in total

Non-sensitive areas between
sensitive volume: 30 mm wide,
pointing in the detector center

Arguments: size of
commercially available steel
plates, machining possibilities,
module stabitlity, installation
process
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Engineering Answers: HCAL Length and Weight

HCAL length: (6700 ± 100) mm
Barrel made of 2 parts, will be slide from both ends of the coil into the
cryostat

One half barrel will have on both sides 2 sliding feets

The feets will rest on rails which will be fixed on the inner wall of the
cryostat

1
z

y

3350 mm

330 t 2

HCAL weight: (660 ± 10) t
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Engineering Answers: HCAL Cables Lengths; Tail
Catcher

HCAL cross sections per end face (half barrel)

Cooling pipes 2 × 16 × d = 60 mm incl. insulation ±10 mm
Power cables 16 × 48 × d = 10 mm ±2mm

CCC/data cables 16 × 48 × d = 12 mm ±2 mm

Electrical power consumption: 2 × 16 × 48 × 50 W = (76800 ± 5000) W

Tail Catcher
Requirements not yet established

Based on optimization studies for the test beam system, assume a
system with several active layers, with 10 cm thick absorber

The gap can be made as thin as 10 mm, if needed (14 mm in test beam)
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Conclusions

Preliminary engineering answers to:

- HCAL absorber material

- barrel dimensions

- shape, length, weight

- Tail Catcher

Subject to change!
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