## Particle Flow and ILD Detector Optimisation Studies

Mark Thomson University of Cambridge



#### <u>This Talk:</u>

- PandoraPFA Performance
- Understanding PFA
- Optimisation Studies
  - i) HCAL depth
  - ii) B-field vs R<sub>TPC</sub>
  - iii) TPC aspect ratio
  - iv) HCAL segmentation
  - v) ECAL segmentation
  - vi) LDCPrime vs GLDPrime
- 4 Tau decays
- **9** Summary and Conclusions

# **PFA Performance**

Studies in this talk start from:

- ★ Use standard Mokka LDCPrime model : LDCPrime\_02Sc
- ★ OPAL tune of Pythia
- ★ Full reconstruction chain:
  - PandoraPFA v02-02 (essentially the released version)
  - FullLDCTracking
- **\*** Non-standard: muon chamber clustering/hits used in PFA
  - not very important, discussed later in talk



Mark Thomson

# LDCPrime vs GLDPrime

#### ★ Magic of LCIO allows a direct comparison of GLDPrime and LDCPrime

- same reconstruction : PandoraPFA
- same STDHep events

### **Results**

| E            | $\sigma_{\rm E}/{\rm E} = \alpha/\sqrt{{\rm E}_{\rm jj}}  \cos\theta  < 0.7$ |          |  |
|--------------|------------------------------------------------------------------------------|----------|--|
| <b>G</b> JET | LDCPrime                                                                     | GLDPrime |  |
| 45 GeV       | 24.9 %                                                                       | 25.9 %   |  |
| 100 GeV      | 30.7 %                                                                       | 35.1 %   |  |
| 180 GeV      | 43.0 %                                                                       | 49.5 %   |  |
| 250 GeV      | 52.2 %                                                                       | 61.0 %   |  |

- ★ Similar performance at 91 GeV.
  - good sanity check

### ★ GLDPrime approx. 15 % worse for E<sub>JET</sub> > 100 GeV

- + PandoraPFA optimised for LDC
- GLDPrime simulated with 1x1 cm<sup>2</sup>
  - ECAL not 4×1 cm<sup>2</sup> strips



# Output Description of the second s

- Try to use various "Perfect PFA" algorithms to pin down main performance drivers (resolution, confusion, ...)
- **★** Aim : understand main features of studies presented here
- ★ Developed new version of PandoraPerfectPFA

(in PandoraPFA v03-α)

### PandoraPFA options: PerfectPhotonClustering hits from photons clustered using MC info and removed from main algorithm PerfectNeutralHadronClustering hits from neutral hadrons clustered using MC info... PerfectFragmentRemoval after PandoraPFA clustering "fragments" from charged tracks identified from MC and added to charged track cluster PerfectPFA perfect clustering and matching to tracks

### Can see how jet energy resolution evolves with increased level of "perfection"

| Algorithm         | σ <sub>E</sub> /E |         |         |         |  |
|-------------------|-------------------|---------|---------|---------|--|
| Algorithm         | 45 GeV            | 100 GeV | 180 GeV | 250 GeV |  |
| PandoraPFA        | 3.7 %             | 3.1 %   | 3.2 %   | 3.3 %   |  |
| +CheatedTracks    | 3.6 %             | 3.0 %   | 3.1 %   | 3.2 %   |  |
| +CheatedPhotons   | 3.6 %             | 2.8 %   | 2.7 %   | 2.7 %   |  |
| +CheatedNeutralHs | 3.4 %             | 2.4 %   | 2.1 %   | 2.0 %   |  |
| +PerfectFragRem   | 3.2 %             | 2.3 %   | 2.1 %   | 2.0 %   |  |
| PerfectPFA        | 3.1 %             | 2.1 %   | 1.7 %   | 1.6 %   |  |

★Using these results (and others) can then obtain estimates of main contributions to PFA performance

- The PerfectParticleFlow algorithms aren't perfect...
- **\*** ...So these resulting numbers are just estimates
  - but probably good enough to understand main features

| Contribution      | σ <sub>E</sub> /E |         |         |         |  |
|-------------------|-------------------|---------|---------|---------|--|
| Contribution      | 45 GeV            | 100 GeV | 180 GeV | 250 GeV |  |
| Calo. Resolution  | 3.1 %             | 2.1 %   | 1.5 %   | 1.3 %   |  |
| Leakage           | 0.1 %             | 0.5 %   | 0.8 %   | 1.0 %   |  |
| FullLDCTracking   | 0.7 %             | 0.7 %   | 1.0 %   | 0.7 %   |  |
| Photons "missed"  | 0.4 %             | 1.2 %   | 1.4 %   | 1.8 %   |  |
| Neutrals "missed" | 1.0 %             | 1.6 %   | 1.7 %   | 1.8 %   |  |
| Charged Frags.    | 1.2 %             | 0.7 %   | 0.4 %   | 0.0 %   |  |
| "Other"           | 0.8 %             | 0.8 %   | 1.2 %   | 1.2 %   |  |

### Comments:

- For 45 GeV jets, jet energy resolution dominated by ECAL/HCAL resolution
   don't expect much dependence of σ<sub>F</sub>/E on B, R etc.
- **\*** Track reco. not a large contribution (FullLDCTracking ~ CheatedTracking)
- ★ "Satellite" neutral fragments not a large contribution
  - efficiently identified and removed by normal FragmentRemoval alg.
- **★** Leakage only becomes significant for high energies (more on this later)
- **\* Missed neutral hadrons** dominant confusion effect
- **\*** Missed photons, important at higher energies (somewhat surprising !)

### **Optimisation Studies:** ① HCAL Depth

#### **Two interesting questions:**

- **★** How important is HCAL leakage ?
  - vary number of HCAL layers
- **\*** What can be recovered using MUON chambers as a "Tail catcher"
  - PandoraPFA now includes MUON chamber reco.
  - Switched off in default version
  - Simple standalone clustering (cone based)
  - Fairly simple matching to CALO clusters (apply energy/momentum veto)
  - Simple energy estimator (digital) + some estimate for loss in coil



### **HCAL Depth Results**

Open circles = no use of muon chambers as a "tail-catcher"

Solid circles = including "tail-catcher"



| HCAL   | λι   |       |
|--------|------|-------|
| Layers | HCAL | +ECAL |
| 32     | 4.0  | 4.8   |
| 38     | 4.7  | 5.5   |
| 43     | 5.4  | 6.2   |
| 48     | 6.0  | 6.8   |
| 63     | 7.9  | 8.7   |

ECAL :  $\lambda_r = 0.8$ HCAL :  $\lambda_r$  includes scintillator

- **\star** Little motivation for going beyond a 48 layer (6  $\lambda_{T}$ ) HCAL
- ★ Depends on Hadron Shower simulation
- ★ "Tail-catcher": corrects ~50% effect of leakage, limited by thick solenoid

For 1 TeV machine "reasonable range" ~ 40 – 48 layers (5  $\lambda_1$  - 6  $\lambda_1$ )

## **Optimisation Studies : ② B vs R**

#### **★** Studied jet energy resolution for various detector models:

- LDCPrime: LDCPrime\_02Sc
- LDC: LDC01\_06Sc
- GLD-sized: modified LDCPrime\_02Sc
- Two smaller detectors: modified LDCPrime\_02Sc with increased B

All: 5x5 mm<sup>2</sup> ECAL seg 30x30 mm<sup>2</sup> HCAL seg

 In addition, study performance as function of B and R starting near to LDCPrime parameters

| Test    | Change              | Parameters |         |         |          |         |
|---------|---------------------|------------|---------|---------|----------|---------|
| B and R | Model=              | SiD-like   | small   | LDC     | LDCPrime | GLD     |
| B-field | B =                 | 2.5 T      | 3.0 T   | 3.5 T   | 4.0 T    | 4.5 T   |
| Radius  | R <sub>ECAL</sub> = | 1280 mm    | 1420 mm | 1600 mm | 1820 mm  | 2020 mm |

### Radius

**★** Start from LDCPrime – vary ECAL inner radius, fixed TPC aspect ratio



### **B-field**

#### **★** Start from LDCPrime – fix geometry, vary B-field



As expected, no dependence for 45 GeV jets (not dominated by confusion)
 For higher energies, higher field helps, e.g.

At 500 GeV going from 3.0 T → 4.0 T : ~ 10 % improvement in resolution

### LDC vs LDCPrime vs LDC4GLD

#### **★** Direct Comparison of LDC, LDCPrime and GLD



#### **★** In terms of jet energy resolution: LDC $\approx$ LDCPrime $\approx$ "LDC4GLD"

### **GLD vs GLDPrime vs J4LDC**

**★** Can compare with similar J4LDC, GLDPrime, GLD studies (Taikan Suehara)



★ In terms of jet energy resolution: GLDPrime ≈ "GLD"
 : J4LDC worse but thin HCAL

# **Bvs. R Interpretation**

### ★ All results shown are fairly well described by (best fit)



- ★ **R** is more important than **B**
- ★ Use parameterisation for comparison of LDC, LDCPrime, LDC4GLD

| Relative to | Confusion | Relative σ <sub>ε</sub> /Ε vs E <sub>JET</sub> /GeV |      |      |      |
|-------------|-----------|-----------------------------------------------------|------|------|------|
| LDCPrime    | Confusion | 45                                                  | 100  | 180  | 250  |
| LDC         | 1.06      | 1.02                                                | 1.03 | 1.05 | 1.06 |
| LDCPrime    | 1.00      | 1.00                                                | 1.00 | 1.00 | 1.00 |
| LDC4GLD     | 0.95      | 0.99                                                | 0.98 | 0.97 | 0.96 |

LDC4GLD slightly (< 4 %) better than LDCPrime</li>
 But LDC, LDCPrime, LDC4GLD differences are small

## **Optimisation: ③TPC Aspect Ratio**



# **TPC Aspect Ratio cont.**



## **Optimisation: @HCAL Segmentation**



## **Optimisation: ⑤ ECAL Segmentation**

- Start from LDCPrime with 5×5 mm<sup>2</sup> SiW ECAL pixel size
   Investigate 10×10mm<sup>2</sup>, 20×20mm<sup>2</sup> and 30×30mm<sup>2</sup>
  - Note: required changes in PandoraPFA clustering parameters



Performance is a strong function of pixel size
 Probably rules out segmentation of >10×10mm<sup>2</sup> !!!!

Is latest version of PandoraPFA optimal for larger pixels ?

no obvious problems seen yet...

# What changes when going from 5×5 mm<sup>2</sup> to 10×10mm<sup>2</sup> ? Use "perfect" reco algorithms

|                   | σ <sub>E</sub> /E                         |        |
|-------------------|-------------------------------------------|--------|
|                   | 5x5 mm <sup>2</sup> 10x10 mm <sup>2</sup> |        |
| PandoraPFA        | 3.2 %                                     | 3.72 % |
| +CheatedTracks    | 3.1 %                                     | 3.55 % |
| +CheatedPhotons   | 2.7 %                                     | 3.06 % |
| +CheatedNeutralHs | 2.1 %                                     | 2.39 % |
| +PerfectFragRem   | 2.1 %                                     | 2.29 % |
| PerfectPFA        | 1.7 %                                     | 2.07 % |

|                   | σ <sub>E</sub> /E   |                       |  |
|-------------------|---------------------|-----------------------|--|
| 180 Gev Jets      | 5x5 mm <sup>2</sup> | 10x10 mm <sup>2</sup> |  |
| Resolution        | 1.5 %               | 1.5 %                 |  |
| Leakage           | 0.8 %               | 0.8 %                 |  |
| FullTracking      | 1.0 %               | 1.1 %                 |  |
| "missed" photons  | 1.4 %               | 1.8 %                 |  |
| "missed neutrals" | 1.7 %               | 1.9 %                 |  |
| Charged fragments | 0.4 %               | 0.7 %                 |  |
| Other             | 1.7 %               | 2.1 %                 |  |

Confusion (particularly in photon reconstruction) increases
 Looks reasonable, but needs checking

### **Optimisation: (6) LDCPrime vs GLDPrime**

 ★ ECAL segmentation dependence probably explains main differences between GLDPrime and LDCPrime PFA performance
 ★ GLD simulation "assumes" 10×10mm<sup>2</sup> ECAL scint. tiles



★ For 180 GeV and 250 GeV jets obtain essentially same performance with LDCPrime and GLDPrime for 10×10mm<sup>2</sup> segmentation

### **★** Small residual differences due to tracking (optimised for LDC) ?

Appears that 5×5 mm<sup>2</sup> is one reason why GLDPrime PFlow performance is somewhat worse than LDCPrime

 Although Jupiter GLDPrime simulation uses 10×10 mm<sup>2</sup> scintillator tiles rather than strips

**★** Studied by D. Jeans, using strip clustering e.g.



Impressive results – crossed strips of 1x5 cm<sup>2</sup> approach 1x1cm<sup>2</sup> perf.
 What about higher energy jets when confusion more important ?

**Opinion : strip concept not yet proven** 

# ECAL Segmentation and taus

- ★ Tau reconstruction studies for LDCPrime, GLD, GLDPrime, and J4LDC will be presented by Taikan tomorrow
- $\star$  Here, vary ECAL segmentation and look at  $~ au^- o 
  ho^- 
  u_ au o \pi^+ \pi^0 
  u_ au$
- ★ Generate single 100 GeV and 250 GeV taus
- ★ Look at reconstucted PFOs
  - e.g. Number of photons (E > 1GeV)





### **★** Mass distributions: $au^- o ho^- au_ au o \pi^+ \pi^0 au_ au$



★ Studies preliminary

- ★ But clear advantages in smaller segmentation
- ★ See Taikan's talk for physics oriented discussion

## **5** Conclusions

**★**Over to you....