Beam-Related Backgrounds and Machine Parameters

How MDI Issues May Affect Your Measurements

Adrian Vogel DESY FLC

Beam-Beam Interaction

The ILC has the novel problem of beamstrahlung

- high luminosity is essential for measurements
- tiny bunch size is required ($\sigma_x \approx 500 \,\mathrm{nm}, \, \sigma_y \approx 5 \,\mathrm{nm}$)
- bunches have a very high electric space charge
- particles are deflected and can emit photons ("beamstrahlung")
- 10⁸ TeV / BX are lost

Beamstrahlung photons can scatter to e⁺e⁻ pairs

- 10⁵ particles per BX for ILC beam parameters
- energies in the GeV range (100 TeV / BX in total)
- strongly focused in the forward direction (small θ)
- but sometimes also large polar angles (large θ)

Several processes can contribute

- incoherent and coherent pair creation
- real-real, real-virtual, virtual-virtual scattering

Pairs are a major source of detector backgrounds!

The Whole Detector – Before ...

Adrian Vogel

The Whole Detector – After 1/10 BX

Adrian Vogel

Vertex detector

- direct hits from the IP (suppressed by the field)
- backscattering particles from the forward region

Main gaseous tracker

- conversion of backscattering photons
- tracks from the IP (rare, but mostly curlers)
- recoil tracks from neutron-proton collisions (CH₄)

Calorimeters

- randomly distributed low-energy hits
- possible neutron radiation damage of SiPMs

Other Kinds of Backgrounds

Other sources of backgrounds

- beam halo muons magnetised spoilers
- beam-gas interaction vacuum requirements
- synchrotron radiation from beam delivery \rightarrow exit
- particle losses in the extraction line \rightarrow careful!
- beam dumps \rightarrow avoid direct line of sight

Those can be controlled by proper design, but pairs are unavoidable: dominant source!

Vertex Detector – Hits

most hits $(0.04 / \text{mm}^2 / \text{BX})$

Clear separation of direct hits and backscatterers

Vertex Detector – Angle of Incidence

Take angle of incidence into account to calculate a realistic pixel occupancy (Rita De Masi, IReS)

Adrian Vogel

Vertex Detector – Occupancy (R. De Masi)

Characteristics for vertex detector options

- pixel size: 25 µm (std.), 20–33 µm (CMOS)
- integration time: 50–200 μ s (std.), 25–100 μ s (CMOS)
- number of hit pixels: 3 (std.), 5 (CMOS), θ-dependent

Resulting occupancies in the vertex layers

- innermost (15 mm): 0.11 (std.), 0.02 (CMOS)
- outermost (60 mm): 0.002 (std.), 0.0008 (CMOS)

Those are only average numbers

- Iocal occupancy can be much higher
- values can be reduced by an anti-DID field

Vertex Detector – Results

Hits on the vertex detector

- innermost layer has 400–800 hits / BX
- most hits direct, but also from backscatterers
- background levels drive the VTX design
- resulting backgrounds are still manageable

Neutron fluence in the vertex detector

- extrapolation from 100 BX to 500 fb⁻¹ total run time
- energy-dependent weighting of neutrons (NIEL model)
- fluence (10⁸ n / cm²) is uncritical for all layers

Forward Tracking Discs – Hits

Adrian Vogel

TPC – Backgrounds

Adrian Vogel

TPC – Spatial Distribution of Hits

Mokka hits in the TPC (overlay of 100 BX)

Adrian Vogel

TPC – Occupancy

- highest occupancies at small radii
- overall value stays very well below 1 %
- outside-in tracking always possible
- n-p scattering gives negligible contribution
- backgrounds will be no problem for the TPC

HCAL Endcap – Backgrounds

Adrian Vogel

HCAL Endcap – Radiation Damage

Simulation results (500 fb⁻¹)

- neutrons are critical only at small radii
- photons are harmless

Possible solutions

- include neutron absorber
- replace innermost SiPMs after some years
- accept increased noise

Tungsten tube is important!

ILC Beam Parameters – Numbers

S. Gronenborn (EUROTeV-Memo-2005-003-1)

Adrian Vogel

ILC Beam Parameters – Backgrounds

- "Low Power" option:2.5 times more hits
- But: half the number of bunches per train
- Integrated backgrounds (over a fixed time) do not change much
- Upgrade to 1000 GeV:
 2 times more hits

Magnetic Field Configuration

Solenoid field (4 Tesla)

- bends high-E tracks
- confines low-E tracks to innermost regions

Anti-DID field (14 mrad)

- bends main field towards hole for outgoing beam
- origins: polarimetry
- reduction of backgrounds
- impact on tracking?

Compressed view 1:10

Anti-DID vs. no DID

Vertex detector

- more backscattering
- \blacksquare asymmetric hits in φ
- Forward Tracking Discs and LumiCal
 - \blacksquare asymmetric hits in φ
- TPC
 - more backscattering
 - twice more hits

BeamCal Absorber

Graphite absorber (low Z) in front of the BeamCal

- reduces backscattering
- decreases performance
- Variation of thickness
 - 5 cm seems reasonable
- Additional absorber inside
 - will not hurt the BeamCal
 - better suppression of detector backgrounds

Uncertainties

- Statistics from 100 BX generally sufficient
- Guinea-Pig is reliable on the level of 10–20 %
- Modelling of neutrons is always difficult → assume uncertainty factor of two
- Small geometry changes can have large effects → easily 2–3 times more backgrounds

- Always aim for a safety factor of five, at least!
- Don't forget other possible background sources

Summary

- e⁺e⁻ pairs are a major source of backgrounds
- But: other possible sources must not be forgotten
- Current levels seem uncritical for all subdetectors
- Further studies are ongoing (see also Marc's talk)
- Backgrounds scale roughly with the luminosity
- Anti-DID is favourable for background suppression and luminosity determination (see Iftach at Sendai) but what about the TPC? (see Ron's talk later)
- Final impact on reconstruction and analysis?
- More MDI: discussion at 14:00 h, Uwe's talk at 17:30 h